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Abstract
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rate risk has so far been a neglected issue in the empirical credit risk literature. This paper

presents a framework in which all three types of risk can be modeled. It is argued that

under the assumption of recovery of face value it is theoretically possible to jointly estimate

both recovery and default intensity risk. Given simulated data, a model containing all

three types of risk is estimated; the results show that default and recovery risk can in fact
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1 Introduction

In the empirical credit risk literature much attention has been paid to modeling and explaining

the credit spread of corporate bonds and credit default swaps, Duffee (1999) and Driessen

(2005) are excellent examples as far as corporate bonds are concerned. However, given the

continued growth of the credit derivatives markets, in particular the remarkable growth of

the default swap market,1 and the constant advent of new products, most recently default

digital swaps and recovery lock products (see Liu, Naldi, and Pedersen (2005) for details),

it becomes evermore imperative to decompose the credit risk into a recovery risk component

and a default risk component. Thorough knowledge of the dynamic structure of the market-

implied risk premia attached to default and recovery risk could play a key role in portfolio risk

management as well as for calculating economic capital requirements. The ability to contrast

this knowledge with the vast literature on actual default probabilities2 and observed recovery

rates on defaulted debt claims would give a better overall understanding of the basic nature

of credit risk and its components.

Bakshi, Madan, and Zhang (2004) were the first to attempt such a decomposition of default

and recovery risk. Unfortunately, their model suffers from the fact that there is only one factor,

the interest rate, to explain both interest rate, default, and recovery risk. More recently, Pan

and Singleton (2005) estimate both the market-implied default risk and the market-implied

recovery rate from observed sovereign credit default swap spreads for three major emerging

market economies (Mexico, Turkey, and Russia). However, their model contains a constant

recovery rate, therefore no knowledge about the dynamics of market-implied recovery rates

can be derived. Neither of these papers allows for the joint estimation of the market-implied

risk premia on default and recovery risk; this paper addresses this issue.

The framework used in this paper is the first to combine the following notable observations

from the credit risk literature on corporate bonds:

(i). There is a growing body of empirical work on recovery rates indicating that stochastic

modeling of the recovery rate is essential.

(ii). An elaborate modeling of the default intensity λt is necessary to match observed yield

spreads.

(iii). Guha (2002) finds in a study of defaulted bonds that at, and in a period after, default

bonds of equal seniority trade at identical prices, independent of their remaining time

to maturity or coupon size. This recovery pattern is most closely modeled through the

assumption of recovery of face value (RFV).

1According to ISDA’s Year-End 2004 Market Survey, the outstanding notional of credit default swaps alone
had reached $8.42 trillion by the end of 2004, up 55% during the last 6 months of that year.

2For an example see reports from ratings agencies like Moody’s and Standard and Poor’s.
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Combining these three features in a reduced-form setting, the price of a defaultable coupon

bond with maturity in T years and N outstanding coupon payments C at dates t1, . . . , tN is

given by3

V C,RFV (T ) = E
Q
0

[
exp

(
−
∫ T

0
(r(Xu) + λ(Xu))du

)]

+
N∑

i=1

CE
Q
0

[
exp

(
−
∫ ti

0
(r(Xu) + λ(Xu))du

)]

+

∫ T

0
E
Q
0

[
π(Xs)λ(Xs) exp

(
−
∫ s

0
(r(Xu) + λ(Xu))du

)]
ds,

where r(Xt) is the risk-free instantaneous interest rate, λ(Xt) is the default intensity, π(Xt)

is the stochastic recovery rate, and Xt is a multi-dimensional vector of state variables.

This paper exploits the asymmetry between the default intensity λ(Xt) and the recovery

rate π(Xt) in the price of a defaultable bond under the RFV assumption in order to investigate

the possibility of decomposing corporate bond spreads into default and recovery risk. To do

this, one must first create a modeling framework that allows expectations of the form

E
Q
0

[
π(Xt)λ(Xt) exp

(
−
∫ t

0
(r(Xu) + λ(Xu))du

)]

to be easily calculated.

A widely popular class of models for bond pricing is that of affine term structure models,

see Duffie and Kan (1996) and Duffie, Pan, and Singleton (2000). The advantage of these

models is that they provide closed-form solutions up to the solution of a set of ODEs, and

the bond price itself is a sum of exponential-affine functions of the state variables. For the

purposes of this paper, the sole relevant limitation is that they only allow for affine functions

of the state variables in the pricing kernel. This implies that in an affine setting, with a full-

scale modeling of the default intensity λ(Xt), the recovery rate π(Xt) has to be modeled either

as a constant or as an exponential-affine function of the state variable π(Xt) = π0 +π1e
−h′Xt

(see Bakshi, Madan, and Zhang (2004) for an application of this).

Now, if one decides to model both the default intensity λ(Xt) and the recovery rate π(Xt)

as affine functions of the state variable Xt, the product π(Xt)λ(Xt) will be a quadratic form of

Xt. The class of quadratic term structure models has the same advantage as the affine class,

they provide closed-form solutions up to the solution of a set of ODEs, and they give bond

prices as a sum of exponential-quadratic functions of the state variables. Filipović (2002)

proves that the quadratic class is the maximal size of a polynomium of the state variables

in the pricing kernel to possess this exponential-polynomial time-separable feature. Beyond

second degree polynomiums, bond price calculations involve solving PDEs directly, which

3This formula does not take into account any accrued interest at default.
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is prohibitively time-consuming in any multi-dimensional setting; hence, the current paper’s

focus on the class of quadratic term structure models. Additionally, the quadratic class is

sufficient to significantly expand the recovery modeling options when default and recovery

risk are jointly modeled.4

Several approaches have been applied in the literature on the estimation of quadratic

models, but they have all focused on estimating the treasury yield curve and comparing the

results to the performance of the affine term structure models. Ahn, Dittmar, and Gallant

(2002) use the EMM procedure of Gallant and Tauchen (1996) to show that quadratic models

better fit the conditional volatility of bond yields than affine models of a similar dimension -

the latter are actually very poor in catching these effects. In addition, they discuss the issue

of identification in the multi-dimensional quadratic model and the handling of risk premia.

Leippold and Wu (2003) identify a set of stylized features of observed US interest rates over

a 15-year period, specifically the hump-shaped conditional volatility of yields. They prove

that it takes at least a two-dimensional quadratic model to match the documented features,

and they use a GMM estimation to fit a parsimonious two-factor quadratic model to the data

that possesses the desired qualities. Kim (2004) estimates quadratic models on 25 years of

US interest rate data using the extended Kalman filter method. He linearizes the quadratic

measurement equation by augmenting the state space with the quadratic terms of the state

variables and demonstrates how to perform the quasi maximum likelihood estimation of the

Kalman filter in this case. He then investigates the relationship between the risk premia

flexibility and the quadratic models’ ability to describe the stochastic volatility of yields. His

study shows that in the quadratic class there is no tension between the risk premia modeling

and the volatility modeling unlike what holds in the affine class (for a discussion of this issue

see Dai and Singleton (2002)).

It should be noted that a potential limitation of working within the quadratic class is

that the state variables are restricted to the affine class of processes with a non-stochastic

volatility matrix (see Leippold and Wu (2002)). The first time the quadratic class of term

structure models was treated with the same level of generality as Duffie, Pan, and Singleton

(2000) had treated the affine class, was in Leippold and Wu (2002). However, Leippold and

Wu (2002) only provided the set of ODEs for the standard quadratic pricing kernel

E
Q
0

[
exp

(
−
∫ T

0
(X ′

uArXu +B′
rXu + Cr)du

)
exp(X ′

TAXT +B
′
XT + C)

]
.

Using the same approach as in Duffie, Pan, and Singleton (2000), this paper extends the

4For example, given an affine function for the default intensity λ(Xt) = λ0 + λ′
1Xt, the most general form

of the recovery rate that keeps the model within the quadratic class is of the form

π(Xt) = π0 + π
′
1Xt + π2 exp(X ′

tAπXt +B
′
πXt) + π

′
3Xt exp(X ′

t
eAπXt + eB′

πXt). (1)
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result of Leippold and Wu (2002) to encompass the extended quadratic pricing kernel

E
Q
0

[
exp

(
−
∫ T

0
(X ′

uArXu+B′
rXu+Cr)du

)
exp(X ′

TAXT +B
′
XT +C)[X ′

TDXT +E
′
XT +F ]

]
.

Now that a modeling framework has been established, a simple three factor model con-

taining affine processes for the interest rate risk, the default intensity risk, and the recovery

risk is applied and simulated. The subsequent estimation is performed in two steps. First,

the path and parameters of the interest rate process are estimated from simulated default-free

treasury bond yields. Then, given the result of the interest rate estimation, a joint estima-

tion of the default intensity risk process and the recovery risk process is performed based on

the simulated corporate bond yields. For both estimations the standard extended Kalman

filter method is applied. The advantage of the Kalman filter approach is that it allows one

to estimate by quasi maximum likelihood the most likely parameters and paths of the fac-

tors without making any unnecessary assumptions. Furthermore, unreported tests show that

practically nothing will be gained by applying the state space augmentation proposed by Kim

(2004).

The results of the estimation show that, with limited noise in the bond yields, it is possible

to distinguish the default intensity risk and the recovery risk. However, despite the asymmetry

implied by the RFV assumption, there is still, in general, a fundamental identification problem

that needs to be addressed. In the future, new credit derivative products like default digital

swaps may provide a way to bypass this problem.

The rest of this paper is structured as follows. Section 2 generalizes the multi-dimensional

treatment of the standard quadratic model in Leippold and Wu(2002) to the extended version

of the quadratic class. Section 3 describes the three-factor model, how it is simulated, and

the specific choice of parameters. Section 4 discusses the Kalman filter estimation, its results,

and the problem of separating the default and recovery risk components. Section 5 concludes

the paper.

2 The differential equations of the extended quadratic model

This section lays out the mathematical results needed in order to calculate expectations of

the type

EQ
[
π(Xt)λ(Xt) exp

(
−
∫ t

0
(r(Xu) + λ(Xu))du

)∣∣∣F0

]
,

where λ(Xt) is affine and π(Xt) has a functional form similar to Equation (1) in Footnote 4.

The state variable processes in the quadratic class of term structure models are restricted

to the affine class with non-stochastic volatility matrices (see Leippold and Wu (2002)). Given

a fixed propability space (Ω,F , P ), where the filtration (Ft) = {Ft : t ≥ 0} satisfies the usual

conditions, see Williams (1997), the state variable Xt is therefore restricted to be an N -
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dimensional Markov process defined on RN that solves a system of stochastic differential

equations of the following form

dXt = [µ0(t) + µ1(t)Xt]dt+ Σ(t)dWt. (2)

Here, W is a standard Brownian motion in Rd, whose information is contained in the filtration

(Ft), and µ0 : [0, T ] → RN , µ1 : [0, T ] → RN×N , and Σ : [0, T ] → RN×d are bounded,

continuous functions.5

The term ’quadratic’ refers to the chosen function for the instantaneous short rate process

which is assumed to be a quadratic form in the state variables

r(Xt, t) = X ′
tA

r(t)Xt +Br(t)′Xt + Cr(t).

If Ar(t) is a semidefinite matrix and the following equality holds

Cr(t) − 1

4
Br(t)′Ar(t)−1Br(t) ≥ 0, ∀t ≥ 0,

then the short rate process will be strictly positive a.s.

The following proposition is an extension of the result in Leippold and Wu (2002) for the

quadratic class of term structure models

Proposition 1:

Let Xt be a stochastic process of the type described by (2), then the expectation

G(Xt, t, T ) = E
[
e−

R T

t
r(Xs,s)dseX

′
T
AXT +B

′
XT +C [X ′

TDXT + E
′
XT + F ]|Ft

]
,

A,D ∈ RN×N , B,E ∈ RN , C, F ∈ R,

where r(Xt, t) = X ′
tA

r(t)Xt + Br(t)′Xt + Cr(t) and Ar : [0, T ] → RN×N , Br : [0, T ] → RN

and Cr : [0, T ] → R are all bounded and measurable functions, has the solution

G(Xt, t, T ) = eX
′
tA(t,T )Xt+B(t,T )′Xt+C(t,T )[X ′

tD(t, T )Xt + E(t, T )′Xt + F (t, T )],

if the following conditions are met

(i). There is a unique solution to the stochastic differential equation (2) of Xt for 0 ≤ t ≤ T .

(ii). There exist functions A(t, T ), B(t, T ), C(t, T ), D(t, T ), E(t, T ), and F (t, T ) which are

the unique solutions to the following system of ordinary first order differential equations

dA(t, T )

dt
= Ar(t)−A(t, T )µ1(t)−µ1(t)′A(t, T )−2A(t, T )Σ(t)Σ(t)′A(t, T ), A(T, T ) = A,

5Stationarity of the state variables is ensured, if all the eigenvalues of µ1(t) are negative (if complex, the
real component should be negative), see Ahn et al. (2002).
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dB(t, T )

dt
= Br(t)−2A(t, T )µ0(t)−µ1(t)′B(t, T )−2A(t, T )Σ(t)Σ(t)′B(t, T ), B(T, T ) = B,

dC(t, T )

dt
= Cr(t)−B(t, T )′µ0(t)−tr(A(t, T )Σ(t)Σ(t)′)−1

2
B(t, T )′Σ(t)Σ(t)′B(t, T ), C(T, T ) = C,

dD(t, T )

dt
= −D(t, T )µ1(t) − µ1(t)′D(t, T ) − 4A(t, T )Σ(t)Σ(t)′D(t, T ), D(T, T ) = D,

dE(t, T )

dt
= −2D(t, T )µ0(t)−2D(t, T )Σ(t)Σ(t)′B(t, T )−µ1(t)′E(t, T )−2A(t, T )Σ(t)Σ(t)′E(t, T ),

E(T, T ) = E,

dF (t, T )

dt
= −E(t, T )′µ0(t)−tr(D(t, T )Σ(t)Σ(t)′)−B(t, T )′Σ(t)Σ(t)′E(t, T ), F (T, T ) = F.

(iii). The following two technical conditions are met

(a) E
[( ∫ T

0 η′tηtdt
)1/2]

<∞ for

ηt =
(
Φt[2X

′
tA(t, T ) +B(t, T )′] + Ψt[2X

′
tD(t, T ) + E(t, T )′]

)
Σ(t).

(b) E
[
|ΦT |

]
<∞.

where Φt = e
R t

0
r(Xs,s)dseX

′
tA(t,T )Xt+B(t,T )′Xt+C(t,T )[X ′

tD(t, T )Xt + E(t, T )′Xt + F (t, T )]

and Ψt = e
R t

0
r(Xs,s)dseX

′
tA(t,T )Xt+B(t,T )′Xt+C(t,T ) for all 0 ≤ t ≤ T .

Proof: See Appendix A.

The proof merely consists of an application of Ito’s lemma to the extended exponential-

quadratic function Φt. If A(t, T ), . . . , F (t, T ) are the solutions to the system of ODEs out-

lined in the proposition (and the additional technical conditions are satisfied), then Φt is a

martingale, and the result follows.

The result developed above is the extension of Leippold and Wu (2002) for the quadratic

term structure models, similar to the extension by Duffie, Pan, and Singleton (2000) of

the result in Duffie and Kan (1996) for the affine term structure models. To calculate the

expectation of the extended pricing kernel one must first solve the same set of ODEs as when

calculating the expectation of the standard pricing kernel, in particular A(t, T ) and B(t, T ).

Once this is done the additional set of ODEs must be solved to obtain the solutions of D(t, T ),

E(t, T ), and F (t, T ).6

As for the three-factor model used later in this paper, the result in the proposition above

shows that the relevant expectations needed to calculate corporate bond prices will take the

6The same two-stage separating principle holds when solving the ODEs for the extended pricing kernel in
the affine term structure models.
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form

EQ
[
π(Xt)λ(Xt) exp

(
−
∫ t

0
(r(Xu) + λ(Xu))du

)∣∣∣F0

]
=

eB(t,T )′Xt+C(t,T )[X ′
tD(t, T )Xt + E(t, T )′Xt + F (t, T )],

where B(t, T ), . . . , F (t, T ) are easily solved by Runge-Kutta methods.

3 A simple three-factor model of corporate bond pricing

In Section 3.1 it will be argued that Recovery of Face Value as a recovery assumption is not

only important for the purpose of distinguishing default and recovery risk but is also the most

appropriate assumption in order to theoretically replicate the legal claim of bond holders at

default. In Section 3.2 a simple model is developed that contains interest rate, default, and

recovery risk while allowing for a fast calculation of bond prices. The set of parameter values

chosen for the simulation of the model is presented in Section 3.3. The actual simulation

and estimation are described in Section 3.4 and Section 3.5, respectively. The results of the

estimation are deferred to Section 4.

3.1 The recovery assumption and the price of a corporate coupon bond

Let rt denote the risk-free instantaneous interest rate. In reduced-form credit risk modeling

the default event of a firm is modeled as the first jump of a doubly-stochastic Poisson process,

independent of the state variables, with arrival intensity λt. The default time is denoted by

τ . Now, consider a defaultable corporate bond with maturity at T and coupon C paid semi-

annually, i.e. there is a set of coupon dates equal to t1 = 1
2 , . . . , tN = T , where N = 2T and,

by definition, t0 = 0 is not a coupon date. The formula applied in order to calculate prices of

such bonds depends critically on the recovery assumption. The difference between the various

recovery assumptions lies in what the recovery rate πt is a fraction of.

In the credit risk literature several recovery assumptions have appeared, most notably the

Recovery of Market Value, the Recovery of Treasury, and the Recovery of Face Value.

The Recovery of Market Value (RMV) assumption is analyzed extensively in Duffie and

Singleton (1999). In the setting of a reduced-form model where the jump of the Poisson point

process that signals the default event is completely unpredictable, this recovery assumption

simply says that at default the bond holder receives an amount equal to a fraction πτ of the

market value prevailing immediately before the default event - a state where everything is

fine, as the default is unpredictable. However, it is not entirely clear what the real world

equivalent is to the theoretical notion of ’the market value immediately before the default

event’. Historically, bond prices of companies that have ultimately filed for bankruptcy have
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had a tendency to decline in the weeks or even months before the actual filing by a mixture

of outright downward jumps and gradual declines due to the market’s loss of faith.7 Thus,

if the market price one business day before the filing is used as a proxy for the theoretical

notion, the recovery rate will be significantly overstated (if one associates a recovery rate to

mean a recovered amount relative to the original principal).

As for the purpose of the current paper, the RMV assumption has an additional unattrac-

tive feature, which becomes evident when looking at the actual bond price formula derived

by Duffie and Singleton (1999). Under the assumption that every coupon payment recovers

the same fraction of their pre-default market value as the principal,8 the formula for the price

of a corporate bond is9

V C,RMV (t, T ) = E
Q
t [e−

R T

t
(ru+(1−πu)λu)du] +

N∑

ti>t

C

2
E
Q
t [e−

R ti
t (ru+(1−πu)λu)du].

Since the default intensity λt and the recovery rate πt only appear as a joint product (1−πu)λu,
it is impossible to distinguish between default and recovery risk, only the total credit spread

is observable. Thus, given the purpose of this paper the RMV assumption is not useful.

A second recovery assumption is the Recovery of Treasury (RT) assumption applied by

Jarrow and Turnbull (1995). Here, the recovered amount is a fraction πt of the value of an

otherwise identical treasury bond, i.e. same time to maturity, coupon size, and payment

dates.

The bond pricing formula for the corporate bond under the RT assumption takes the

following form

V C,RT (t, T ) = E
Q
t [1{τ>T}e

−
R T

t
rudu] +

N∑

ti>t

E
Q
t [
C

2
1{τ>ti}e

−
R ti
t rudu]

+ E
Q
t

[ ∫ T

t
πs1{s<τ≤s+ds}e

−
R s

t
rudu

(
e−

R T

s
rudu +

N∑

ti>s

C

2
e−

R ti
s
rudu

)
ds
]
.

Using the well-known conditioning principle for Cox processes, see Lando (1998), this can be

7Lando (2004) p. 121 has an illustration of this for the Enron Corporation that filed for Chapter 11 on 2
December 2001.

8This must be the case in order for the concept of pre-default market value to refer to just one price.
9The advantage of the RMV assumption and the reason why it is widely used in the empirical credit risk

literature is that all the mathematical tools traditionally applied within standard term structure theory for
calculating bond prices can be immediately applied to calculate corporate bond prices.
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written as

V C,RT (t, T ) = E
Q
t [e−

R T

t
(ru+λu)du] +

N∑

ti>t

C

2
E
Q
t [e−

R ti
t (ru+λu)du]

+

∫ T

t
E
Q
t

[
πsλse

−
R s

t
(ru+λu)du

(
EQs [e−

R T

s
rudu] +

N∑

ti>s

C

2
EQs [e−

R ti
s
rudu]

)]
ds.

From the formula it is evident that the RT assumption allows for a separation of default and

recovery risk.

To the author’s best knowledge, Bakshi, Madan, and Zhang (2004) is the only paper to

date that has examined the appropriateness of the recovery assumption for the empirical

separation of default and recovery risk. They compare the RT and RFV assumptions and

find that the RT assumption performs better on their data of BBB-rated corporate bonds

in out-of-sample tests and in terms of minimizing the pricing error. However, the interest

rate is the only stochastic factor in their model and their sample only consists of data on 25

companies; so to draw firm conclusions based on their analysis is questionable. It should be

noted, however, that they do find that the RFV assumption implies more stable estimates of

expected recovery rates, and for that reason they argue that the RFV assumption might be

preferred when writing recovery related contingent claims.

Under the Recovery of Face Value (RFV) assumption the bond holder immediately receives

the following payoff in the event of a default before maturity

• A fraction πτ of the face value of the bond.

• A fraction πτ of the accrued interest since the last coupon date.

Guha (2002) studies the market prices at and around default of different corporate bonds

issued by the same company and belonging to the same seniority class. The first part of

his paper studies the legal details of standard bond indentures and the US bankruptcy code.

Most bond indentures state that in the event of default, the principal, including any accrued

interest, immediately becomes due. From an economic point of view, coupon payments, while

a legal claim, can be considered to be no more than compensation for postponed consumption.

The implication of this line of thinking is that defaulted bonds of the same seniority should

trade at identical prices in the secondary market, independent of the coupon size or the

remaining time to maturity. However, deviations from this pattern can be observed in the

market for several reasons. In Chapter 11 proceedings10 claims are grouped into different

classes, mainly according to seniority. The bankruptcy code states that all claims in the

10In Guha (2002)’s sample of defaulted companies, 32 out of the 34 US domiciled companies ultimately filed
for Chapter 11 after they had defaulted on their debt, so one can expect a large majority of US corporate
bankruptcies to eventually go through this procedure.
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same class must be treated in the same way.11 From an ex ante point of view, at the time

of default it can be difficult to envision how the dynamic structure of the negotiation game

caused by the various voting rules in the code will play out, and to predict in which class a

specific claim may be placed. This uncertainty can cause claims of equal seniority to trade

at different prices at the time of default.

In his empirical analysis, Guha (2002) finds that in 80% of the cases, bonds of the same

seniority trade within a band of $1 per $100 principal at the time of default, independent of

coupon size and time to maturity, which is what would be expected under the RFV assump-

tion. In addition, he also investigates whether the observed price patterns could be fitted by

other recovery assumptions, in particular the RMV and RT assumptions discussed earlier.

He does not find that any of these alternatives are superior to the RFV assumption.

Under the RFV assumption the basic pricing equation of the corporate coupon bond under

consideration is given by

V C,RFV (t, T ) = E
Q
t

[
1{τ>T}e

−
R T

t
rudu

]
+

N∑

ti>t

E
Q
t

[C
2
1{τ>ti}e

−
R ti

t rudu
]

+ E
Q
t

[ ∫ T

t
πs1{s<τ≤s+ds}e

−
R s

t
rududs

]

+

N∑

ti>t

E
Q
t

[ ∫ ti

ti−1

πs
C

2

s− ti−1

ti − ti−1
1{s<τ≤s+ds}e

−
R s

t
rududs

]
.

The two terms in the first line equal the expected discounted value of principal and coupon

payments, respectively, conditional upon survival. The remaining two terms refer to the

discounted value of the recovered amount of the principal and the accrued interest at default,

respectively.

Again, using the conditioning principle for Cox processes, this can be written as

V C,RFV (t, T ) = E
Q
t [e−

R T

t
(ru+λu)du] +

N∑

ti>t

C

2
E
Q
t [e−

R ti
t (ru+λu)du]

+

∫ T

t
E
Q
t [πsλse

−
R s

t
(ru+λu)du]ds

+

N∑

ti>t

∫ ti

ti−1

C

2

s− ti−1

ti − ti−1
E
Q
t [πsλse

−
R s

t
(ru+λu)du]ds.

This formula shows that under the RFV assumption the recovery rate πt and the default

intensity λt appear asymmetrically. This allows for the possibility of estimating the properties

of both processes from observed corporate bond prices. Combining this with the economic

11Of course unless the claimants have given their consent to be treated otherwise.
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intuition and the empirical support in Guha (2002), this paper will adopt the Recovery of

Face Value assumption.

3.2 The model

The mathematical result in Section 2, Proposition 1, provides a modeling framework in which

all expectations in the RFV bond price formula are easily calculated. If the interest rate rt

is set equal to one of the state variables, and the default intensity λt and the recovery rate

πt are linearly correlated with rt then, in order to remain within the quadratic class, the

state variables must be confined to the class of affine processes with non-stochastic volatility

matrix.

The risk-free instantaneous interest rate is thus assumed to be of the Vasicek type

drt = κr(θr − rt)dt + σrdW
r
t .

Besides the interest rate process, the state variables consist of two independent factors also

of the Vasicek type

dXλ
t = κλ(θλ −Xλ

t )dt+ σλdW
λ
t ,

dXπ
t = κπ(θπ −Xπ

t )dt+ σπdW
π
t .

The default intensity and the recovery rate are assumed to be affine functions of the factors

λt = λ0 + λr(rt − θr) + λ1(X
λ
t − θλ),

πt = π0 + πr(rt − θr) + π1(X
π
t − θπ).

The affine formulation is chosen because it is simple, allows for positive as well as negative

correlation between the interest rate on one side and the default intensity and the recovery

rate on the other, and keeps the model within the quadratic class as far as bond pricing is

concerned.

The assumption of Gaussian state variables has both advantages and disadvantages. As for

the estimation to be performed, the Gaussian state variables imply that the state equation

of the Kalman filter becomes Gaussian. This means that the quasi maximum likelihood

estimation is efficient and consistent. Because the Gaussian state variables allow for negative

interest rates and default intensities and recovery rates above 1 or below 0, it is not an ideal

model; however, since the focus in this paper is on the ability to distinguish movements in

the πt-process from movements in the λt-process, these objections are not critical.

In the base case, all three factors are assumed to carry risk premia (as a controlling

11



experiment the case without risk premia attached to the default and recovery risk is also

considered). In theoretical terms, Bakshi et al. (2004) show that, provided investors are risk

averse and recovery is stochastic, both the default intensity and the recovery rate will carry a

risk premium under the pricing measure. Empirically, Driessen (2005) finds that if common

factors are left out of consideration, the median company carries a premium on the credit

spread risk that becomes insignificant once common factors with risk premia are added to the

estimation.

Based on the result in Driessen (2005), the interest rate can be considered the model-

equivalent of his common factors and should therefore carry risk premia, while the default

and recovery risk factors can be considered idiosyncratic without risk premia. For this to be

compatible with the insight from Bakshi, Madan, and Zhang (2004), the interest rate appears

in both the default intensity and the recovery rate. This model will be denoted Model A.

By having only the interest rate as a common factor it could be argued that some sys-

tematic risk has been left unmodeled. Model B adjusts for this, and risk premia are attached

to the default and recovery risk factors in addition to those already attached to the interest

rate.

The structure of the assumed risk premia for Model A is given by the following change of

measure

dW̃ r
t = dW r

t + (γr0 + γr1rt)dt.

The change of measure for Model B is given by

dW̃ r
t = dW r

t + (γr0 + γr1rt)dt,

dW̃ λ
t = dW r

t + (γλ0 + γλ1X
λ
t )dt,

dW̃ π
t = dW r

t + (γπ0 + γπ1X
π
t )dt.

This formulation allows for time-varying risk premia in the factor processes.

3.3 Choice of parameters

In order to simulate the model, specific parameter values are needed. This subsection will

discuss the choice of parameters.

The interest rate is modeled by a single factor. Given this, the parameters chosen below

are only meant to be realistic relative to the general level of interest rates. There is no

intention to match the slope or other features of the yield curve documented in the vast

empirical literature on yield term structures. The chosen parameters are the following

drt = 0.5(0.0375 − rt)dt + 0.01dW r
t .

12



Under the empirical measure, the unconditional mean is 3.75% with a volatility of 1% and a

mean reversion rate of 0.5. The risk premia are assumed to be γr0 = −1 and γr1 = −1, which

implies that under the Q-measure it holds that

drt = 0.49(0.0587 − rt)dt + 0.01dW̃ r
t .

The unconditional mean under the pricing measure is close to 6% with a slightly smaller mean

reversion rate.

As for the factor loadings in the default intensity λt and the recovery rate πt the following

parameters were chosen

λt = 0.01 − 0.05(rt − 0.0375) +Xλ
t − 0.005,

πt = 0.44 + rt − 0.0375 +Xπ
t .

Under the empirical measure the unconditional mean of λt is 1% which is close to the average

one-year default probability over the business cycle of a Ba-rated company (for an example see

Christensen et al. (2004)). For firms of very high credit quality (A-rated companies and above)

the default intensity is so low that it is close to impossible to measure the risk contribution

from the stochastic recovery.12 On the other hand, for speculative grade companies investors

are much more focused on what will be left in the event of a default, so recovery risk is

believed to play a much larger role in the pricing of speculative grade bonds. Therefore, the

default intensity level is matched to that of a Ba-rated company.

Empirical studies on the relationship between corporate bond spreads and treasury yields

like Duffee (1998), Driessen (2005), and Bakshi et al. (2004) have all found a negative

correlation between the two. One possible explanation for the negative relationship between

interest rate and default intensity might be the following. The short end of the yield curve

is low when the general economic climate is weak. In this case, the earnings growth in the

companies will be low or negative while their coupon payments remain unchanged and the

value of their debt is high. In a simple Merton-type model this will increase the probability of

default, the reverse is true when the short-term interest rate level is high due to high economic

activity and high earnings growth. Here, this finding is interpreted as referring mainly to the

development of the default intensity, which is the reason why the factor loading on the interest

rate in the default intensity function is assumed to be negative.

The chosen factor loadings in the formulation of the recovery rate πt implies an uncon-

ditional mean recovery rate under the P -measure of 44% which is identical to the average

recovery rate on senior unsecured bonds found in Moody’s data as referred to by Duffee

12The effect of the stochastic recovery at default is too small relative to the other types of risks such as
interest rate and liquidity risk to be measured accurately.
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(1999) and used by Driessen (2005). Based on a sample of more than 1200 defaulted bonds

and their observed recovery within one month of the default, Covitz and Han (2004) found

a statistically significant positive relationship between the observed recovery rates and the

yield on 3-month treasury bills.13,14 Provided that the yield on 3-month treasury bills is a

good proxy for the instantaneous interest rate rt, it is fair to assume a positve factor loading

of the interest rate in the πt-function. As for the order of magnitude, Covitz and Han (2004)

found that an increase of 1% in the 3-month treasury yield will increase the recovery rate

by 3%-4%. In the simulations here, a more conservative one-to-one positive relationship is

assumed.

Given that there have been no empirical studies on joint estimations of default and recov-

ery risk, it is difficult to get a clear idea about what appropriate parameter values for the two

risk factors Xλ
t and Xπ

t would be. The following parameters are considered sensible choices

dXλ
t = 0.25(0.005 −Xλ

t )dt + 0.005dW λ
t ,

dXπ
t = −0.25Xπ

t dt+ 0.1dW π
t ,

The mean of 50 bps and the mean reversion rate of 0.25 for the Xλ
t -process is close to the

median of those two parameters found by Duffee (1999)15 when estimating the idiosyncratic

factors of bond spreads across 161 companies. As for the volatility, the results are not imme-

diately comparable since Duffee (1999) estimated a model based on CIR processes. However,

taking his median estimate for the mean of 55.9 bps and for the volatility at 0.074, one can

calculate a pseudo-average volatility as 0.074
√

0.00559 = 0.00553, which is close to the 50 bps

used above.

For the recovery rate risk factor a similar number for the mean reversion rate has been

assumed. The volatility of 10% is set in order to match the large variation in observed recovery

rates found in studies like Covitz and Han (2004) and Altman and Kishore (1996). Finally,

the mean has been set to 0.

Turning to the risk premia of the two factors, the following is chosen for the Xλ
t -process

γλ0 = −0.1, γλ1 = −1.

It is difficult to compare these numbers to the results obtained by Duffee (1999) or Driessen

13They investigated both linear and non-linear relationships between the two, and in both cases they found
a significant positive relationships as long as the 3-month T-Bill rate is not too high (by their numbers, below
7-8%).

14Bakshi et al. (2004) finds a similar positive correlation between the interest rate and market-implied
recovery rates. However, in their model the effect is indirect through the impact of the interest rate on the
default intensity, which in turn impacts the recovery rate. The sign, however, is not in doubt, it is positive for
all 25 firms in their sample.

15See Table 3 in Duffee (1999) where the median κ, θ, and σ are, respectively, 0.238, 0.00559, and 0.074.
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With risk premia PQ(τ > T ) Pτ>T Cτ>T R0<τ≤T Price Yield Spread

C = 4% 0.038495 0.004153 0.992032 0.047684 0.005782
T = 1

C = 7%
0.990033 0.949385

0.067366 0.004183 1.020934 0.047731 0.005842

C = 4% 0.171106 0.016259 0.924898 0.056685 0.006300
T = 5

C = 7%
0.950290 0.737533

0.299436 0.016379 1.053348 0.056756 0.006555

C = 4% 0.293995 0.025285 0.843114 0.060290 0.006615
T = 10

C = 7%
0.901189 0.523835

0.514491 0.025470 1.063796 0.060447 0.007064

Table 1: Basic statistics of a defaultable bond with T -year maturity and coupons paid semi-annually

at rate C = 4% and C = 7%, respectively. PQ(τ > T ) is the T -year survival probability under the Q-
measure. Pτ>T and Cτ>T are the value of principal and coupons, respectively, conditional on survival
beyond maturity. R is the recovery part of the bond price conditional on default before maturity. The
parameters of the state variables are (κr, θr, σr) = (0.5, 0.0375, 0.01), (κλ, θλ, σλ) = (0.25, 0.005, 0.005),
and (κπ, θπ, σπ) = (0.25, 0, 0.1). The factor loadings are : λ0 = 0.01, λr = −0.05, λ1 = 1, π0 = 0.44,
πr = 1, and π1 = 1. Finally, the risk premia are γr

0 = −1, γr
1 = −1, γλ

0 = −0.1, γλ
1 = −1, γπ

0 = 0.5,
and γπ

1 = −0.5. The values of the state variables are r0 = 0.0375, Xλ
0 = 0.005, and Xπ

0 = 0.

(2005) in their studies on corporate bond spreads, as they both work with a CIR-based model

with only one idiosyncratic risk premium parameter.

The limited empirical literature does not provide any guidance on the risk premia attached

to the recovery risk factor, the values below are regarded as reasonable

γλ0 = 0.5, γλ0 = −0.5.

What is the impact of the risk premia? Under the equivalent pricing measure it holds that

dXλ
t = 0.245(0.0071 −Xλ

t )dt+ 0.005dW̃ λ
t ,

dXπ
t = 0.2(−0.25 −Xπ

t )dt + 0.1dW̃ π
t .

The unconditional mean of the default intensity λt under the Q-measure will thus be 110.8

bps, while the unconditional mean of the recovery rate πt under the pricing measure will be

21.12%.

Finally, for the corporate bonds, a set of maturities and coupon sizes have to be chosen.

In order to have the short, medium, and long end of the maturity range represented, bonds

with a remaining maturity of 1, 5, and 10 years will be simulated.

In their analysis of the RMV assumption, Duffie and Singleton (1999) show that default

and recovery risk cannot be distinguished, only the total credit spread risk is observed. They

also use numerical examples to show that for bonds trading at or very near par the identifica-

tion problem is the same under the RFV assumption. For this reason the coupon sizes should

be chosen so that the bonds will be trading either above or below par. Therefore, bonds with

a coupon size of 4% and 7%, both paid semi-annually, are used in the simulations.
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Without risk premia PQ(τ > T ) Pτ>T Cτ>T R0<τ≤T Price Yield Spread

C = 4% 0.038501 0.004269 0.992385 0.047325 0.005423
T = 1

C = 7%
0.990273 0.949615

0.067376 0.004307 1.021298 0.047368 0.005479

C = 4% 0.171407 0.018482 0.930773 0.055297 0.004911
T = 5

C = 7%
0.954608 0.740884

0.299963 0.018645 1.059492 0.055412 0.005210

C = 4% 0.295406 0.031411 0.857725 0.058187 0.004512
T = 10

C = 7%
0.913360 0.530909

0.516960 0.031689 1.079557 0.058474 0.005092

Table 2: Basic statistics of a defaultable bond with T -year maturity and coupons paid semi-annually

at rate C = 4% and C = 7%, respectively. PQ(τ > T ) is the T -year survival probability under
the Q-measure. Pτ>T and Cτ>T are the value of principal and coupons, respectively, given survival
beyond maturity. R is the recovery part of the bond price conditional on default before maturity. The
parameters of the state variables are (κr, θr, σr) = (0.5, 0.0375, 0.01), (κλ, θλ, σλ) = (0.25, 0.005, 0.005),
and (κπ, θπ, σπ) = (0.25, 0, 0.1). The factor loadings are : λ0 = 0.01, λr = −0.05, λ1 = 1, π0 = 0.44,
πr = 1, and π1 = 1. Finally, the risk premia are γr

0 = −1, γr
1 = −1. The values of the state variables

are r0 = 0.0375, Xλ
0 = 0.005, and Xπ

0 = 0.

Table 1 shows the prices, yields, and credit spreads16 of the 6 different bonds tracked in

the simulation when the state variables are at their unconditional mean under the P -measure.

It is seen that the 7% bonds trade somewhat above par, while the 4% bonds trade well below

par. Given that there are no tax or liquidity effects in the model the spreads will inevitably

be below actually observed spreads of Ba-rated companies. The column denoted R0<τ≤T

contains the part of the bond price that is related to the recovery at default. Its share of the

total bond price ranges from 0.4% to 3%, increasing with the time to maturity. It is from

this relatively modest term that the dynamics of the πt-process are derived.

In the controlling experiment, the risk premia on the default and recovery risk are left

out to examine whether this has an impact on the ability of making a joint estimation of the

default and recovery risk. The statistics for the bonds at the unconditional mean of the state

variables in this scenario can be found in Table 2.

Finally, to get an impression of the impact of the size of the measurement error in the

observed bond yields, a normally distributed measurement error is added to the simulated

bond yields. This is the model-equivalent of the problems related to bid-ask spreads and

general noise in price observations. In the simulations, the benchmark will be a standard

deviation of 1 bp, and a control experiment will use a standard deviation of 5 bps, which is

more realistic when talking about corporate bond yields.

3.4 The simulation

The simulation of the three-factor model is performed in two steps. First, 10 years of the

instantaneous interest rate process under the P -measure are simulated with monthly obser-

16The credit spread is defined as the difference between the yield-to-maturity of the corporate bond and
that of a treasury bond with the same remaining time to maturity, coupon sizes, and payment dates.
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vations starting at the unconditional mean17

rt = κr(θr − rt−1)∆t+ σr
√

∆tzrt , zrt ∼ N(0, 1), r0 = θr,

where ∆t = 1
12 denotes the discrete, fixed time interval between each simulated outcome of the

process. Based on the simulated path of rt, prices of the treasury bonds with a coupon rate

of 5% paid semi-annually, and maturities {1, 2, 3, 5, 7, 10}18 are calculated using the formula

below

V C(t, Tj) = E
Q
t [e−

R Tj
t rudu] +

N∑

ti>t

C

2
E
Q
t [e−

R ti
t rudu]

and converted into yields to maturity by

N∑

ti>t

C

2
e−y

C(t,Tj)ti + e−y
C(t,Tj )Tj = V C(t, Tj).

A normally distributed measurement error with mean zero and a standard deviation of 1 bp

is added to these treasury yields. This makes up the ’observed’ set of treasury bond yields,

which will be common to all firms in the economy.

Next, for each i of a total of 50 firms, 10 years of theXi,λ
t - andXi,π

t -processes are simulated

in a similar fashion to rt under the P -measure

X
i,λ
t = κiλ(θ

i
λ −X

i,λ
t−1)∆t+ σiλ

√
∆tzi,λt , z

i,λ
t ∼ N(0, 1), X

i,λ
0 = θiλ,

X
i,π
t = κiπ(θ

i
π −X

i,π
t−1)∆t+ σiπ

√
∆tzi,πt , z

i,π
t ∼ N(0, 1), X

i,π
0 = θiπ.

Prices of defaultable bonds, with two different coupon rates, 4% and 7%, paid semi-annually

and maturities {1, 5, 10}, are calculated, converted into yields, and a measurement error with

a mean of zero and a standard deviation of 1 bp (and 5 bps in the control experiment) is

added.

In total, 4 sets of observed corporate bond yields are calculated for each set of simulated

paths, (rt,X
i,λ
t ,X

i,π
t ), and they are as follows

(i). Without risk premia attached to (Xi,λ
t ,X

i,π
t ) and a standard deviation of the measure-

ment error of 1 bp (Model A, σε = 1 bp).

(ii). With risk premia attached to (Xi,λ
t ,X

i,π
t ) and a standard deviation of the measurement

error of 1 bp (Model B, σε = 1 bp).

(iii). Without risk premia attached to (Xi,λ
t ,X

i,π
t ) and a standard deviation of the measure-

ment error of 5 bps (Model A, σε = 5 bps).

17The diffusion processes are simulated using the Euler method.
18The set of maturities is kept fixed out of computational convenience. However, introducing maturity

reduction and on-going new issuances of matured bonds is not believed to influence the results in any significant
way.

17



0.01 0.02 0.03 0.04 0.05 0.06

0.
00

2
0.

00
6

0.
01

0

r

C
re

di
t s

pr
ea

d

0.000 0.005 0.010

0.
00

2
0.

00
6

0.
01

0

X lambda

C
re

di
t s

pr
ea

d

−0.4 −0.2 0.0 0.2 0.4

0.
00

2
0.

00
6

0.
01

0

X pi

C
re

di
t s

pr
ea

d

−0.4 −0.2 0.0 0.2 0.4

0.
00

2
0.

00
4

0.
00

6
0.

00
8

T = 1   
T = 5   
T = 10  

Figure 1: Illustration of the sensitivity of the credit spread of the defaultable 7% coupon bonds to

changes in the three risk factors, rt, X
λ
t , and Xπ

t , respectively. The full-drawn lines are for the 1-year
maturity. The dashed and dotted lines are for the 5- and 10-year maturities, respectively. In the
base case the parameter values are (κr, θr, σr) = (0.5, 0.0375, 0.01), (κλ, θλ, σλ) = (0.25, 0.005, 0.005),
and (κπ, θπ, σπ) = (0.25, 0, 0.1). The factor loadings are λ0 = 0.01, λr = −0.05, λ1 = 1, π0 = 0.44,
πr = 1, and π1 = 1. Finally, the risk premia are γr

0 = −1, γr
1 = −1, γλ

0 = −0.1, γλ
1 = −1, γπ

0 = 0.5,
and γπ

1 = −0.5. The values of the state variables are equal to their unconditional mean under the
P -measure r0 = 0.0375, Xλ

0 = 0.005, and Xπ
0 = 0.

(iv). With risk premia attached to (Xi,λ
t ,X

i,π
t ) and a standard deviation of the measurement

error of 5 bps (Model B, σε = 5 bps).

The first two cases that have a measurement error with a standard deviation of 1 bp (σε = 1

bp) will be considered the benchmark cases, in the sense that they reveal what can be obtained

under close to ideal conditions.

3.5 The estimation

Once the simulated data for each firm is obtained, a quasi maximum likelihood method based

on the Kalman filter is used to estimate the paths and parameters for the three risk factors.

The estimation is performed in two steps. First, the parameters and the path of the interest

rate process are estimated from the simulated treasury bond yields using a standard extended

Kalman filter. Since the simulated path of the interest rate is common to all 50 firms, this

step only has to be performed once. Second, for each firm, the parameters and paths of the

idiosyncratic risk factors, Xi,λ
t and Xi,π

t , including all the factor loadings, are estimated using
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ψ true value estimate

κr 0.5 0.500
θr 0.0375 0.0387
σr 0.01 0.00942
γr0 -1 -0.998
γr1 -1 -1.01
σrε 0.0001 0.0000980

Table 3: Result of the estimation of the interest rate process rt based on the simulated yields for the
treasury bonds.

the quasi maximum likelihood of the extended Kalman filter. Appendix C has the technical

details including a discussion of the identification problem involved in the second step.

3.5.1 Factor sensitivity of the credit spread

This subsection examines the sensitivity of the credit spread of defaultable bonds to changes in

the risk factors and will shed some light on the possibility of estimating a model of defaultable

debt that incorporates both recovery risk and default intensity risk.

To illustrate the effect of varying the values of the state variables, start out by fixing a

set of parameter values and factor loadings and let the state variables assume their uncon-

ditional mean under the P -measure. This produces the base case credit spreads for the 1-,

5-, and 10-year maturity bonds in Table 1. Next, each state variable is varied in an interval

around its unconditional mean while keeping the other two state variables unchanged and the

corresponding credit spread for the 3 different maturities is calculated. For the 7% coupon

bonds, this yields the three graphs in Figure 1.

Across maturities, the smallest effects are observed for the bonds with longer maturities

which is caused by the mean-reversion of the state variables. The implication of this is that

for very long maturities the current values of the state variables have only marginal impact

on the corporate bond yield spread. On the other hand, for bonds with shorter maturities

the spread is much more sensitive to changes in the state variables. In order to pin down the

path of the risk factors, Xλ
t and Xπ

t , it is necesasry to have both short and long maturity

bonds represented in addition to different coupon sizes for each maturity.

It is worth noticing that the credit spread varies approximately linearly in all three fac-

tors for each of the three maturities. This means that if one uses the extended Kalman

filter method for estimating a model with default intensity and recovery risk, the common

practice of linearizing the measurement equation through a first-order Taylor expansion is a

satisfactory approximation for estimation purposes.19

19For further details see Appendix B and for applications of this method to real corporate bond data see
Duffee (1999) and Driessen (2005).
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(a) The simulated (solid line) and estimated
(dashed line) path of the interest rate process
rt.
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(b) The difference between the simulated path
of rt and the estimated rt-values from the ex-
tended Kalman filter estimation.

Figure 2: Result of extended Kalman filter estimation based on the simulated treasury yields.

4 Results

This section goes through the results of the estimations based on the simulated data described

in Section 3. The result of the Kalman filter estimation based on the simulated treasury bond

yields is described in Section 4.1. Section 4.2 contains a thorough analysis of the results of the

subsequent joint estimation of default and recovery risk and in Section 4.3 the identification

problem that causes problems in the joint estimation is discussed.

4.1 The Kalman filter estimation of the interest rate rt

In Table 3 the true and estimated parameter values of the interest rate process are listed.

Because the requirement of normally distributed errors in the affine state equation and the

measurement equation are both satisfied by the simulated treasury yields, it is well known

that the Kalman filter is an efficient and consistent estimator of the true parameters (see

Hamilton (1994), Section 13.4). The result in Table 3 is a reflection of this fact with only

minor differences between the estimated and the true values.

The simulated and estimated path of rt are illustrated in Figure 2(a) and are practically

identical, Figure 2(b) depicts the difference between the two paths. The mean absolute error

of the estimated path is equal to 6.61×10−5 or little more than half of the standard deviation

of the included measurement error.20 A standardized measure of the difference between the

two paths is given by the mean absolute error relative to the conditional standard deviation

20Note that a perfect fit is never obtained as yields are observed with error.
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ψ true value mean (A) median(A) sd(A) mean (B) median(B) sd(B)

λ0 0.01 0.00994 0.00996 0.000440 0.00996 0.00995 0.000812
λr -0.05 -0.0499 -0.0500 0.00390 -0.0498 -0.0501 0.00385
λ1 1 1.11 1.07 0.234 1.02 1.02 0.138
π0 0.44 0.438 0.438 0.0263 0.446 0.442 0.0376
πr 1 1.03 1.05 0.415 1.02 1.02 0.473
π1 1 0.805 0.946 0.429 0.951 0.970 0.142

κλ 0.25 0.250 0.253 0.0109 0.247 0.246 0.0108
σλ 0.005 0.00481 0.00492 0.000813 0.00505 0.00504 0.000841
κπ 0.25 0.248 0.247 0.0210 0.270 0.257 0.0474
σπ 0.1 0.0905 0.0897 0.0309 0.100 0.100 0.00139

γλ0 -0.1 -0.104 -0.0999 0.0310
γλ1 -1 -0.799 -0.875 0.568
γπ0 0.5 0.522 0.502 0.0681
γπ1 -0.5 -0.681 -0.521 0.493

σε 0.0001 0.0000994 0.0000993 4.16×10−6 0.000100 0.0000996 2.89×10−6

Table 4: Results of the estimations based on simulated data with a measurement error with mean
zero and a standard deviation of σε = 1 bp for all 50 firms. ’A’ refers to the simulations where the
idiosyncratic risk factors do not carry any risk premia, while ’B’ refers to the simulations where they
do carry risk premia.

of the interest rate process over time intervals of length ∆t, i.e.

1
1

∆tN

∑

t

|rt − r̂t|√
Vt[rt+∆t]

.

With a value of 0.0233 for the estimated r̂t-path this measure indicates that the average error

is less than 2.5% of the random noise induced by the Brownian motion. This means that

errors caused by the Kalman filter are insignificant for practical purposes. The above result

will serve as a benchmark of what can be achieved under ideal conditions.

4.2 The Kalman filter estimation of default and recovery risk

Table 4 presents the empirical mean, median, and standard deviation of the parameter es-

timates for the 50 simulated firms21 for the two benchmark cases (Section 3.4, (i-ii)) where

the measurement error has a standard deviation of 1 bp. Model A refers to the simulated

data without any risk premia attached to the default and recovery risk factors, Xi,λ
t and Xi,π

t ,

while Model B refers to the simulated data where such risk premia have been attached to

these risk factors.

In comparing the two benchmark cases, Model A and Model B, the ability to separate the

default intensity process from the recovery rate process is examined; the uncertainty of the

21Due to the time required for each optimization only 50 simulations have been performed for each type of
experiment. Performing further simulations is not believed to add much insight into the problem of making a
joint estimation of default and recovery risk.

21



estimates, proximity of their mean and median to the true values, proximity of the estimated

path to the simulated path, and precision of the risk premia are all considered. Based on the

preceding criteria it is concluded that overall Model B (which includes risk premia) performs

better.

An initial intuitive question when decomposing bond spreads into a default component

and a recovery component is whether the model is able to accurately estimate the mean of

each component. As for the dynamics under the P -measure, this question can be answered

simply by looking at the estimates of the constant terms in the default intensity, λ0, and in

the recovery rate, π0. In both models these terms have mean and median close to the true

values, and the histograms of the estimate distributions indicate no bias.22 The uncertainty

about the estimates, as measured by their standard deviation, increases when moving from

Model A to Model B, but does not reach unreasonable levels. Pan and Singleton (2005) make

a simulation study based on CDS spreads somewhat along the same lines as the current study.

For the default intensity the two studies are not comparable, as Pan and Singleton (2005) use

square-root (CIR), lognormal, and three-halves processes, however concerning the recovery

rate they use a constant rate fixed at 0.25.23 Thus, the results for the π0-parameter in Table

4 can, with some caution, be compared to the accuracy with which Pan and Singleton (2005)

estimate their constant recovery. When they simulate a stationary λt-process under the Q-

measure (which is the appropriate comparison to the current study), their mean estimate

of the recovery rate is upward biased (0.285 vs. the true 0.25), but the empirical standard

deviation of their 100 estimates is 0.0135. With a standard deviation of the π0-estimates of

0.0263 and 0.0376 in Model A and B, respectively, the accuracy is somewhat less, but the

estimates appear to be unbiased.24

The case of allowing for factors derived from alternative data sources, represented in the

current framework by the interest rate process rt estimated from treasury yields, is relevant

for practical applications of the model developed in this paper. Examining the ability of the

models to distinguish the factor loadings in the default intensity and the recovery rate of such

exogenously given factors is critical. The numbers for the factor loadings λr and πr in Table

4 show that Model A and Model B perform equally well in this respect.

The mean and median of λr in both models are very close to the true value and their

standard deviations are almost identical. The histograms for the 50 estimates of λr in Models

A and B25 are consistent with this observation in that the bulk of the estimates are very close

to the true factor loading.

For the factor loading in the recovery rate πr, despite the fact that Model A has a slightly

22See Figures 6 and 9.
23The recovery rate of 25% appears as a loss rate of 75% in their model.
24Unfortunately, it is not possible to tell what the level of the standard deviation of the measurement error

is in their study, as their value for σε of 0.5 refers to the standard deviation relative to the absolute size of the
bid-ask spread in their real CDS data.

25See Figures 6 and 9.
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smaller standard deviation, its mean and median are farther from the true value than that of

Model B. Looking at the empirical distribution of the πr-estimates26 it is observed that the

πr-estimate of Model A is upward biased. In addition, both models have fat tails indicating

that estimates anywhere in the interval between 0 and 2 cannot be excluded. Therefore, if

Model A were to be chosen, even though there would be a slightly smaller uncertainty about

the estimate, on average it would be further from the true value.

A true separation of default intensity and recovery rate can only be said to be successful,

if the model is accurate in the decomposition of bond yield movements into movements of the

default intensity and movements of the recovery rate. The current model’s level of success

can be measured by examining the following:

• The estimates of the factor loadings, λ1 and π1, of the default and recovery risk factors.

• The ability of the model to estimate the dynamic properties of Xi,λ
t and Xi,π

t .

• The proximity of the estimated paths of Xi,λ
t and Xi,π

t to the simulated ones.

Each of these three measures will be studied in turn.

Concerning the factor loadings, there is a clear difference in the performance between

the two models. The standard deviation for the factor loading λ1 of Xλ
t in Model B is only

one-half that of Model A. The standard deviation for the factor loading π1 of Xπ
t in Model

B is only one-third that of Model A.

For both models, the distribution of the factor loading for the default intensity risk factor

λ1 is positively skewed with a mean above the true value. The distribution of the factor

loading of the recovery risk factor π1 is negatively skewed with a mean below the true value27

and this is more pronounced for Model A than for Model B. This implies that the estimate

of λ1 is typically above the true value, and the impact of idiosyncratic changes to λt are

overestimated. The estimate of π1 has a tendency to be below its true value, and the impact

of idiosyncratic changes to πt tend to be underestimated. Part of the relatively large standard

deviation for these parameters may be explained by the manner in which the model has been

identified by fixing the mean of the two processes, θλ and θπ, respectively, and leaving λ1

and π1 as free parameters (see Appendix B for details). The uncertainty of the λ1- and π1-

estimates can be seen as a reflection of the usual difficulty of estimating the mean parameter

of a process with a relatively low rate of mean reversion given only 10 years of data.

With respect to the dynamic properties of the default and recovery risk processes, Xi,λ
t and

X
i,π
t , the numbers provided in Table 4 resemble to a large extent the findings in Duffee and

Stanton (2004), who also perform Monte Carlo simulation studies with subsequent estimations

based on the Kalman filter, amongst other methods.28 For the one-factor Gaussian term

26See Figures 7 and 10.
27See Figures 6, 7, 9, and 10.
28In most cases they make 500 simulated sets of yield observations for either 2 or 5 zero-coupon bonds with

1000 weekly observations for each bond.
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structure model with affine price of risk (the equivalent of the interest rate model applied

in this paper), they find that the estimate of the mean-reversion rate κ under the physical

measure is biased, while the estimate of κ under the Q-measure is unbiased. They note that,

primarily, this phenomenon is a small-sample property that is particularly strong for near

unit-root processes, and thus this finding is not limited to, and certainly not caused by, the

Kalman filter. With a constant risk premium, which implicitly includes the case of no risk

premia, they do not find any such bias.

With flexible dynamics of the risk premia, the risk factor has the following properties

under the physical and the equivalent measure29

• Under the physical measure: dXλ
t = (κλθλ − κλX

λ
t )dt + σλdW

λ
t .

• Under the Q-measure: dXλ
t = (κλθλ − γλ0σλ − (κλ + γλ1σλ)X

λ
t )dt + σλdW̃

λ
t .

This shows that the physical and risk-neutral drift terms do not share any common parameters

due to the flexibility of the risk premium structure. As bond yields are priced under the Q-

measure, there is no bias in the estimate of the mean-reversion rate under the Q-measure,

κ
Q
λ = κλ+γλ1σλ. However, there will be a bias in the estimate of the mean-reversion rate under

the P -measure. Given the above relationship between the mean-reversion rate under the two

measures, those two features are not compatible unless the estimate of the risk premium

parameter, γλ1 , is biased in the opposite direction of the estimate of κλ.

Consistent with the results in Duffee and Stanton (2004), the results for Model A, the

model without risk premia, indicate that there is no bias in either the κλ- or the κπ-estimates

(see Table 4). However, a downward bias in the σπ-estimate in Model A is observed, which

is inconsistent with the findings in Duffee and Stanton (2004), where they report no bias for

volatility estimates in any of their Gaussian one- or two-factor models.

For Model B, the model with the flexible risk premium structure, there is only weak

evidence of a downward bias in the κλ-estimates, however, there is bias in the corresponding

risk premium γλ1 -estimate as expected. Thus, the seeming lack of bias in the κλ-estimates

can be explained by the small size of the product γλ1 σλ relative to the size of κλ, the risk

premium is simply not large enough to induce an observable bias in κλ. On the other hand,

for the κπ-estimates there is a clear upward bias similar to the finding of Duffee and Stanton

(2004). And the corresponding risk premium, γπ1 , is downward biased.

For the constant part of the risk premia, γλ0 and γπ0 , no bias is observed, and combined

with a reasonable level of the standard deviations this is in line with what would be expected

based on the results in Duffee and Stanton (2004). As their κ-values are much smaller than

the ones used in this paper (and therefore closer to the unit-root case), they find evidence

of ’strong bias’, while the combinations of (κ, σ, γ1)-values considered in this paper only give

29Here, the default intensity risk factor is used just as an example, the same argument holds for the recovery
risk factor Xπ

t .
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Figure 3: Illustration of the simulated paths for Xλ
t , and Xπ

t along with the corresponding implied
paths from the Kalman filter estimation based on simulated yields containing risk premia for both the
default and the recovery risk factors (Model B). The standard deviation of the measurement error is
1 bp. The simulated paths are the solid lines, whereas the estimated paths are given by the dashed
lines.

rise to relatively modest levels of bias, in particular if compared to the standard deviation of

the estimates.

If out of convenience (or lack of data in an empirical setting) one or more common factors

are neglected, risk premia will need to be attached to the idiosyncratic risk factors as demon-

strated by Driessen (2005). The results in Table 4 show that adding risk premia introduces a

bias in the estimation of the mean-reversion rates of the default and recovery risk factors and

a bias in the estimation of the stochastic part of the corresponding risk premium. However,

this does not take away precision from the other parameter estimates, in fact, it might be

argued that it adds precision for several relevant parameters, most notably λ1, π1, and σπ.

Thus far the question has been how well the parameters are estimated. However, another

equally important dimension is how well the models are performing in terms of the accuracy

with which the estimated paths mimic the simulated paths. One advantage of the Kalman

filter method is that, in addition to parameter estimates, it also delivers the corresponding

most likely path of the state variables. So how well are the estimations doing with respect

to this measure? In Figure 3 the estimated paths of Xi,λ
t and X

i,π
t are illustrated for two

representative sets of Model B simulated data. In general, neither of the two paths are

matched as closely as in the estimation of the interest rate process in Section 4.1. For the
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mean (A) median(A) sd(A) mean (B) median(B) sd(B)

X
i,λ
t 0.874 0.698 0.680 0.791 0.602 0.504

X
i,π
t 11.6 1.97 30.4 1.57 1.31 0.668

Table 5: Results for the standardized mean absolute error of the estimated paths of X i,λ
t and X i,π

t ,

which is calculated as 1
1

∆t
N

∑
t

|Xi,λ
t − bXi,λ

t |q
Vt[X

i,λ

t+∆t
]

and 1
1

∆t
N

∑
t

|Xi,π
t − bXi,π

t |q
Vt[X

i,π

t+∆t
]
, respectively, based on 50 estima-

tions. ’A’ refers to the simulations where the idiosyncratic risk factors do not carry any risk premia,
while ’B’ refers to the simulations where they do carry risk premia. The standard deviation of the
measurement errors were set to 1 bp.

default intensity risk factor, the estimated paths track the simulated paths reasonably well

with minor temporary deviations. For the estimated paths of the recovery risk factor the

temporary deviations tend to be relatively larger and last for a longer period of time.

In order to compare the deviations across processes a standardized measure of the devia-

tion of each estimated path is needed. The preferred statistic used in this paper is given by

calculating, for each observation point, the absolute error relative to the conditional standard

deviation of the process; the mean of these ratios along the entire estimated path is then

calculated and regarded as the standardized measure. Table 5 shows the mean, median, and

standard deviation of calculating the standardized mean absolute error for each of the esti-

mated paths in the 50 estimations for Model A and B, respectively. Judged by this statistic,

Model B with risk premia attached to the default and recovery risk factors is better at jointly

estimating both the default intensity risk and the recovery risk. In terms of the level of error

in the Model B-estimations, the mean estimate of the average absolute error of the estimated

path of the default intensity risk factor is 0.79 times the conditional standard deviation of

the Xi,λ
t -process. Given the parameters of the Xi,λ

t -process used in the simulation, the con-

ditional one-month standard deviation is 14.3 bps, so the absolute size of the average error is

approximately 10-12 bps. For the recovery risk factor in Model B the statistic is close to 1.6

which means an average absolute error in the estimated path values of the state variable of

4-5%30 which is less satisfactory. For the Model A-estimations, the result for the estimated

paths of the default risk factor, Xi,λ
t , is only marginally worse than those found in the Model

B-estimations. However, for the estimated paths of the recovery risk factor Xi,π
t the statistic

is significantly worse in the Model A-estimations with a median of almost 2, and a mean of

11.6.31

The overall conclusion is that both models can claim some success in estimating the path

of the default risk factor Xi,λ
t . However, for the recovery risk factor Xi,π

t , it is only Model

B (that with risk premia attached to both risk factors) that can claim success in closely

replicating the simulated paths.

30The 1-month conditional standard deviation of Xi,π
t is 2.86% at the true parameters.

31This is clearly influenced by a handful of outliers where the estimated path of Xi,π
t is far from the simulated

path.
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ψ λ0 λr λ1 κλ σλ π0 πr π1 κπ σπ σε
λ0 1 -0.174 -0.327 -0.820 0.265 0.860 0.088 0.058 0.715 0.502 -0.011
λr 1 0.198 -0.090 -0.383 0.065 0.008 -0.323 0.175 -0.251 -0.051
λ1 1 0.327 -0.877 -0.272 -0.057 -0.156 -0.132 -0.678 -0.121
κλ 1 -0.151 -0.758 -0.137 0.097 -0.615 -0.456 -0.042
σλ 1 0.152 0.072 0.194 0.026 0.646 0.097
π0 1 -0.306 0.190 0.729 0.474 -0.006
πr 1 -0.503 0.067 -0.036 -0.020
π1 1 -0.040 0.120 0.011
κπ 1 0.385 -0.063
σπ 1 -0.079
σε 1

Table 6: Matrix of correlation coefficients for the empirical distribution of parameter estimates in
Model A without risk premia on the default risk and the recovery risk factor. The standard deviation
of the true measurement error was set equal to 1 bp. The matrix has been calcuted based on the
results of 50 estimations.

The above analysis of the estimated parameters has been partial, in the sense that the

properties of each parameter have been judged by examining the marginal distributions.

One way to detect systematic patterns across parameter estimates is to look at the pairwise

correlation coefficients. With 50 estimations in each model, there are not enough observations

to obtain a stable estimate of the matrix of pairwise correlation coefficients. Efron (1982)

talks about 1000 simulations or more needed to get a good picture of the tails of a distribution,

and it seems that something similar holds for moments of higher order.

For completeness, the empirical matrices of correlation coefficients are presented in Table

6 for Model A and Table 9 for Model B. When analyzing the correlations, the estimate for

the standard deviation of the measurement error σε is consistently close to being uncorrelated

with the other parameter estimates.

In summarizing the findings for the benchmark cases, those with 1 bp measurement noise

standard deviation, Model B dominates. It is noted that in both models the estimation

is able to accurately determine the mean of the default intensity and of the recovery rate,

this holds in estimating the factor loadings for exogenously given factors as well. But when

it comes to estimating the characteristics of the default and recovery risk factors, Model B

performs better, despite the bias imposed on the estimation of the mean-reversion parameters

by the flexibility of the affine risk premia structure. For important parameters like λ1, π1,

and σπ, the estimates in Model B are closer to the true value and have smaller standard

deviations and the deviations of the estimated paths from the true paths are smaller than

those observed in Model A. Finally, the risk premia themselves are very important (which

Model B incorporates); the price of default and recovery risk is of interest in a wide range of

applications.
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ψ true value mean (A) median(A) sd(A) mean (B) median(B) sd(B)

λ0 0.01 0.00962 0.00958 0.00122 0.0102 0.0101 0.00198
λr -0.05 -0.0387 -0.0361 0.0490 -0.0470 -0.0490 0.0370
λ1 1 0.991 1.00 0.195 1.04 1.05 0.247
π0 0.44 0.434 0.443 0.0509 0.425 0.428 0.0818
πr 1 0.862 1.09 1.82 0.864 0.998 1.24
π1 1 0.793 0.859 0.992 0.982 1.02 0.396

κλ 0.25 0.252 0.250 0.0313 0.245 0.243 0.0297
σλ 0.005 0.00525 0.00508 0.000922 0.00505 0.00487 0.00141
κπ 0.25 0.401 0.264 0.739 0.329 0.280 0.197
σπ 0.1 0.0979 0.0950 0.0995 0.0839 0.0922 0.0356

γλ0 -0.1 -0.0997 -0.0873 0.0934
γλ1 -1 -0.738 -0.903 1.55
γπ0 0.5 0.614 0.561 0.327
γπ1 -0.5 -1.13 -0.675 1.95

σε 0.0005 0.000499 0.000496 1.52×10−5 0.000498 0.000495 1.38×10−5

Table 7: Result of the estimations based on simulated data with a measurement error with zero mean
and a standard deviation of σε = 5 bps for a total of 50 firms. ’A’ refers to the simulations where
the idiosyncratic risk factors do not carry any risk premia, while ’B’ refers to the simulations where
they do carry risk premia. For each parameter in each type of model the empirical mean, median, and
standard deviation are provided.

4.2.1 Control experiment: standard deviation of measurement error fixed at 5

bps

This subsection will briefly go through the major findings of the control experiment, where

the noise terms added to the simulated yields have a standard deviation of 5 bps, instead of

the 1 bp considered in the preceding section.

Given the noise and lack of highly liquid corporate bonds for many corporate bond issuers,

the results discussed so far can be viewed as a benchmark of what can be achieved under

ideal conditions. By increasing the volatility of the measurement error, the experimental

environment approaches that which is observed in the market. The analysis is not performed

with a noise volatility of, say 25 bps or more (for the given set of parameters), as the finer

details of the recovery process would surely drown in this sea of noise.32

Table 7 shows the result of the estimations based on data with a standard deviation of

the measurement error of 5 bps. As before, Model A refers to estimations based on simulated

data without risk premia attached to the default and recovery risk factors, Xi,λ
t and X

i,π
t ,

while Model B refers to the result of estimations where such risk premia are included in those

two processes.

The fundamental question remains the same: Is the model able to accurately decompose

32If the mean level of the default intensity was raised to, say 300 bps, the importance of the recovery
component would increase correspondingly, thus an estimation at higher noise levels is not excluded per se,
but in the given parameter setting to go beyond 5-10 bps noise volatility does not make sense, as demonstrated
by the results in this section.
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mean (A) median(A) sd(A) mean (B) median(B) sd(B)

X
i,λ
t 1.31 1.15 0.687 1.72 1.43 1.01

X
i,π
t 20.5 2.86 94.2 3.53 2.85 1.65

Table 8: Results for the standardized mean absolute error of the estimated paths of X i,λ
t and X i,π

t ,

which is calculated as 1
1

∆t
N

∑
t

|Xi,λ
t − bXi,λ

t |q
Vt[X

i,λ

t+∆t
]

and 1
1

∆t
N

∑
t

|Xi,π
t − bXi,π

t |q
Vt[X

i,π

t+∆t
]
, respectively. ’A’ refers to the

simulations where the idiosyncratic risk factors do not carry any risk premia, while ’B’ refers to the
simulations where they do carry risk premia. The standard deviation of the measurement errors were
set to 5 bps.

the observed bond yields into a default component and a recovery component?

With respect to the mean under the P -measure, represented by the λ0- and the π0-

parameters, both models still accurately estimate the mean of the default intensity. As far

as the mean of the recovery rate is concerned, Model B performs worse given the increased

noise, with a downward biased mean estimate and a volatility that has more than doubled.

The ability to accurately separate the impact of exogenous factors like the interest rate rt

is reduced. For λr and πr, in both models, there is now a clear downward bias in the mean

estimate, and in three out of the four cases, the standard deviation is now larger than the

mean of the estimated parameters.

In terms of the ability to estimate the factor loadings and dynamic properties of the default

and recovery risk factors, there is a divide in the results (shown in Table 7). For the default

risk factors in Model A, the standard deviation of the estimate for λ1 actually decreases and

the uncertainty about the σλ-estimate only grows marginally, while the standard deviation of

the κλ-estimate is tripled, the estimate is still unbiased. In Model B, the downward bias in κλ

and the upward bias in κπ becomes more pronounced while the standard deviation of those

same parameter estimates increases by a factor 3 and 4, respectively. A natural consequence

of this is that the biasness and the standard deviations of the risk premium parameters, γλ1

and γπ1 , have changed in a similar way. Overall, for the recovery risk factor in both models,

the performance of the estimation has deteriorated. This finding shows that, given increased

observation noise, it is still reasonable to estimate the properties of the default intensity, but

for the recovery rate the properties of the process are in general not determined with as much

accuracy as would be observed in a setting with less noise.

As for the estimated paths of the risk factors, much the same results are found. Examining

the standardized measure of the deviations of the estimated paths from the simulated ones,

shown in Table 8, it is observed that the size of the measure has doubled, but Model A

performs better with respect to tracking the path of the default intensity risk factor Xi,λ
t ,

while Model B remains the better for tracking the path of the recovery risk factor Xi,π
t .

The general conclusion derived from this experiment is that, naturally, as observation

noise increases the uncertainty about the parameter estimates grows, but the model’s ability
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to estimate the essential parameters of the default and recovery risk factors seems to decline

somewhat beyond what one would have expected from a moderate sized noise volatility of 5

bps.33

The next section will discuss the nature and cause of the model’s weaker performance as

revealed by the experiment with the 5 bps noise volatility.

4.3 Identification problem

The difficulties in the estimations above can be traced to the problem of precisely determining

the estimated paths of the default and recovery risk factors. This is caused by a fundamental

identification problem inherent in the corporate bond yields as soon as measurement noise is

added to the true yields. The basic feature of this phenomenon is illustrated in Figure 4.

Figures 4(a) and 4(b) show the combinations of (Xλ
t ,X

π
t ) that would give a perfect fit of

the true yields (evaluated at the unconditional mean of each process) for the three observed

maturities for the 7% and the 4% coupon bonds, respectively.34 From these figures it follows

that without any measurement error, there is a unique choice that gives a perfect fit, namely

the original simulated value. However, as soon as measurement noise is added to the picture,

exemplified in Figure 4(a) by a negative error of -2 bps to the observed yield of the 1-year 7%

bond, there is no longer a unique combination that gives a perfect fit. Instead, the Kalman

filter tries to find the choice of (Xλ
t ,X

π
t ) that gives the smallest sum of squared errors across

the 6 observed bond yields while taking the underlying dynamics of the two processes into

account. From the figure it is seen that this balancing procedure (minimizing squared errors

vs. being loyal to the dynamics of the state variables) will result in a tendency to either

exceed or understate the estimated path values of both risk factors.35 This pattern can be

observed in Figure 3 which illustrates examples of the estimated paths against the simulated

ones.

This feature of corporate bond yields makes one look for other financial products that

allow the joint estimation of default and recovery risk with greater precision than found in

the study of simulated corporate bond yields. One important and relevant alternative would

be the credit default swap. The market for this product has been growing very rapidly

in recent years, by some measures it is more liquid than the corporate bond market, and

there are indications that the default swap market leads the corporate bond market in terms

of incorporating the most recent information (see Blanco, Brennan, and Marsh (2004) for

details). Could these products be used to help solve the identification problem found when

33To put the 5 bps into perspective it can be noted that Kim (2004) performs simulations with 15 bps noise
volatility, while Duffee and Stanton base their simulations on 60 bps error volatility.

34Kim (2004) has an extensive discussion of the identification problem in the quadratic yield term structure
models. There, the state variables that give a perfect fit to observed yields take the form of an ellipse. For the
corporate bonds treated here, the (Xλ

t ,X
π
t )-combinations that give a perfect fit are hyperbola-like curves in

the relevant range of the state variables.
35A value of Xλ

t above the true value gives rise to a large spread, this is counterbalanced by letting the value
of the recovery risk factor also be above the true value, and vice versa in the case of joint understatement.
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Figure 4: Illustration of the identification problem inherent in the corporate bond yields simulated.

The observed yields are calculated by fixing (Xλ
t , X

π
t ) at (0.005,0). The parameters are fixed at the

true values in the simulated Model B, See Table 4.

decomposing corporate bond yields?

The premium of a default swap is given by the formula

S(0, T ) =
EQ
[ ∫ T

0 (1 − πs)λse
−
R s

0
(ru+λu)duds|F0

]

EQ
[∑N

i=1 δie
−
R ti
0

(ru+λu)du +
∑N

i=1

∫ ti
ti−1

(s − ti−1)λse
−
R s

0
(ru+λu)duds|F0

] ,

where T is the time to maturity, t1, . . . , tN are the swap premium payment dates, and δi =

tt − ti−1 the time between the ith and the (i-1)th payment dates.

From this formula it is evident that the asymmetry of the default intensity λt and the

recovery rate πt also exists for this group of products. However, π still only appears as the

product πtλt, which was the fundamental cause of the identification problem in the case of

corporate bond data.

In Figure 5, the black curves show (Xλ
t ,X

π
t )-combinations that induce a perfect fit for

the 1-, 5- and 10-year CDS contracts when there is no measurement noise. The grey curve

illustrate what happens if a negative measurement error of -2 bps is added to the observed

1-year CDS premium. From the figure it is seen that the situation is the same as for corporate

bond yields with noise. Thus replacing corporate bond yields with observed premia on CDS

contracts will not completely eliminate the fundamental identification problem. But it may

serve to mitigate the problem if the measurement error noise in the CDS market is smaller

due to greater liquidity.
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Figure 5: Illustration of the (Xλ
t , X

π
t )-combination that induces a perfect fit for individual CDS

contracts with a specific observed premium. The maturities of the contracts are 1, 5, and 10 years,
respectively. The observed premia are calculated by fixing (Xλ

t , X
π
t ) at (0.005,0). Finally, the grey

line in the graph shows the impact of adding a measurement error of -2 bps to the observed 1-year
CDS premium. The parameters are fixed at the true values in the simulated Model B, See Table 4.

5 Conclusion

The purpose of this paper has been to investigate the extent to which it is possible, from

observed corporate bond yields, to identify a default intensity component as well as a recovery

risk component. To that end, it is argued that the appropriate and most realistic recovery

assumption to use is the Recovery of Face Value assumption. This recovery assumption, in

addition to being supported by empirical data, has the salient property that it actually allows

for an identification of both default and recovery risk from observed corporate bond yields.

In order to exploit this in a setting that is as realistic as possible, a three-factor model

containing interest rate risk, default intensity risk, and recovery rate risk is set up and simu-

lated using a set of parameters that is chosen, with care, based on results from the empirical

literature on corporate bond yields and studies of recovery rates of defaulted debt claims.

Subsequently, the simulated corporate bond yields are used to perform Kalman filter estima-

tions that reveal whether it is possible to not only obtain the true parameters used in the

simulations, but to replicate the paths as well.

The results turn out to be fairly benevolent to the path and parameters of the default

intensity process, and less so to those of the recovery rate process. More importantly, it turns

out that the volatility of the measurement error in the observed yields plays a critical role. If

this noise component is not too large, it is indeed possible to decompose yields into default

and recovery risk factors with satisfactory accuracy. On the other hand, if the noise volatility

is significant it is not possible to obtain a satisfactory decomposition by merely observing

corporate bond yields, it is then that additional financial products must be included in the
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sample of observations.

Despite the mixed results, the methods used in this paper can be applied to real corporate

bond data and still deliver valuable insights into the market’s perception of recovery risk as

well as default intensity risk.

The separation of the default intensity process λt and the recovery rate process πt is

essential in many settings, some of which are detailed here. Pricing of contingent claims: The

premium payment leg of many credit derivatives is priced solely based on information about λt,

i.e. only to have information about the mean loss rate πtλt is insufficient. Risk management:

In order to manage risk effectively it is essential to not only know the distribution of default

arrivals but the distribution of default severity as well. Bank regulation: In the new Basel

II-rules for the internal ratings-based approach, banks are required to deliver an estimate

for both the one-year probability of default and the expected loss given default. To be able

to derive information about λt and πt from market data could prove to be a vital input to

the information derived from the banks’ internal models. Future research in this area could

be directed at both the theoretical development and empirical analysis of the components of

credit risk in these settings, which are limited at present.
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6 Appendix A

This appendix will prove the result in Proposition 2, where the process for the state variable

is of the following type

dXt = [µ0(t) + µ1(t)Xt]dt+ Σ(t)dWt,

while the interest rate is assumed to be a quadratic form of Xt

r(Xt, t) = X ′
tA

r(t)Xt +Br(t)′Xt + Cr(t).

The claim now goes that

E[e−
R T

t
r(Xs,s)dseX

′
TAXT +B

′
XT +C [X ′

TDXT + E
′
XT + F ]|Ft] =

eX
′
tA(t,T )Xt+B(t,T )′Xt+C(t,T )[X ′

tD(t, T )Xt + E(t, T )′Xt + F (t, T )],

where A(t, T ), B(t, T ), C(t, T ), D(t, T ), E(t, T ), and F (t, T ) are solutions to a set of ODEs.

First, define the following two functions

Ψt = e−
R t

0
r(Xs,s)dseX

′
tA(t,T )Xt+B(t,T )′Xt+C(t,T ),

Φt = e−
R t

0
r(Xs,s)dseX

′
tA(t,T )Xt+B(t,T )′Xt+C(t,T )[X ′

tD(t, T )Xt + E(t, T )′Xt + F (t, T )].

Now, apply Ito’s lemma to the Φt-function to obtain

dΦt = −r(Xt, t)Φtdt

+ Φt

[
X ′
t

dA(t, T )

dt
Xt +

dB(t, T )

dt

′

Xt +
dC(t, T )

dt

]
dt

+ Φt[dX
′
tA(t, T )Xt +X ′

tA(t, T )dXt] + ΦtB(t, T )′dXt

+
1

2
Φt[2dX

′
tA(t, T )dXt]

+
1

2
Φt[dX

′
tA(t, T )Xt +X ′

tA(t, T )dXt +B(t, T )′dXt]

× [dX ′
tA(t, T )Xt +X ′

tA(t, T )dXt +B(t, T )′dXt]

+ Ψt

[
X ′
t

dD(t, T )

dt
Xt +

dE(t, T )

dt

′

Xt +
dF (t, T )

dt

]
dt

+ Ψt

[
dX ′

tD(t, T )Xt +X ′
tD(t, T )dXt + E(t, T )′dXt

]

+
1

2
Ψt

[
2dX ′

tD(t, T )dXt

]

+ 2 × 1

2
Ψt[dX

′
tA(t, T )Xt +X ′

tA(t, T )dXt +B(t, T )′dXt]

× [dX ′
tD(t, T )Xt +X ′

tD(t, T )dXt + E(t, T )′dXt].
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From Leippold and Wu (2002) it follows that the five first lines can be rearranged into the four

first lines of the following expression. Besides this, the underlined elements in the remaining

terms have been transposed to obtain36

dΦt = ΦtX
′
t

[dA(t, T )

dt
−Ar(t) + µ1(t)′A(t, T ) +A(t, T )µ1(t) + 2A(t, T )Σ(t)Σ(t)′A(t, T )

]
Xtdt

+ ΦtX
′
t

[dB(t, T )

dt
−Br(t) + 2A(t, T )µ0(t) + µ1(t)′B(t, T ) + 2A(t, T )Σ(t)Σ(t)′B(t, T )

]
dt

+ Φt

[dC(t, T )

dt
− Cr(t) +B(t, T )µ0(t) + trace(Σ(t)′A(t, T )Σ(t)) +

1

2
B(t, T )′Σ(t)Σ(t)′B(t, T )

]
dt

+ Φt

[
2X ′

tA(t, T ) +B(t, T )′
]
Σ(t)dWt

+ Ψt

[
X ′
t

dD(t, T )

dt
Xt +

dE(t, T )

dt

′

Xt +
dF (t, T )

dt

]
dt

+ Ψt

[
dX ′

tD(t, T )Xt +X ′
tD(t, T )dXt + E(t, T )′dXt

]

+ Ψt

[
dX ′

tD(t, T )dXt

]

+ Ψt

[
4X ′

tA(t, T )dXtdX
′
tD(t, T )Xt + 2X ′

tA(t, T )dXtdX
′
tE(t, T )

]

+ Ψt

[
2B(t, T )′dXtdX

′
tD(t, T )Xt +B(t, T )′dXtdX

′
tE(t, T )

]
.

Assuming that A(t, T ), B(t, T ), and C(t, T ) are the solutions to the ODEs in Proposition 1,

the first three lines can be eliminated. In addition, the fact that dXt = [µ0(t) + µ1(t)Xt]dt+

Σ(t)dWt can be applied to obtain

dΦt = Φt

[
2X ′

tA(t, T )Σ(t) +B(t, T )′Σ(t)
]
dWt

+ Ψt

[
X ′
t

dD(t, T )

dt
Xt +

dE(t, T )

dt

′

Xt +
dF (t, T )

dt

]
dt

+ Ψt

[(
[µ0(t) + µ1(t)Xt]dt + Σ(t)dWt

)′
D(t, T )Xt +X ′

tD(t, T )
(
[µ0(t) + µ1(t)Xt]dt+ Σ(t)dWt

)]

+ ΨtE(t, T )′
(
[µ0(t) + µ1(t)Xt]dt+ Σ(t)dWt

)

+ Ψt

(
[µ0(t) + µ1(t)Xt]dt + Σ(t)dWt

)′
D(t, T )

(
[µ0(t) + µ1(t)Xt]dt+ Σ(t)dWt

)

+ Ψt

[
4X ′

tA(t, T )Σ(t)Σ(t)′D(t, T )Xt + 2X ′
tA(t, T )Σ(t)Σ(t)′E(t, T )

]
dt

+ Ψt

[
2B(t, T )′Σ(t)Σ(t)′D(t, T )Xt +B(t, T )′Σ(t)Σ(t)′E(t, T )

]
dt.

36Transposing is allowed since the terms are mere one-dimensional real numbers.
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Now, collect all square terms of Xt, all terms with a single X ′
t, and all terms without any Xt

dΦt = ΨtX
′
t

[dD(t, T )

dt
+ µ1(t)′D(t, T ) +D(t, T )µ1(t) + 4A(t, T )Σ(t)Σ(t)′D(t, T )

]
Xtdt

+ ΨtX
′
t

[dE(t, T )

dt
+ 2D(t, T )µ0(t) + µ1(t)′E(t, T )

+ 2A(t, T )Σ(t)Σ(t)′E(t, T ) + 2D(t, T )Σ(t)Σ(t)′B(t, T )
]
dt

+ Ψt

[dF (t, T )

dt
+ µ0(t)′E(t, T ) +B(t, T )′Σ(t)Σ(t)′E(t, T )

]
dt

+ Ψt

[
(dWt)

′Σ(t)′D(t, T )Σ(t)dWt

]

+ Φt

[
2X ′

tA(t, T ) +B(t, T )′
]
Σ(t)dWt + Ψt

[
2X ′

tD(t, T ) + E(t, T )′
]
Σ(t)dWt.

IfD(t, T ), E(t, T ), and F (t, T ) are the solutions to the following ordinary differential equations

dD(t, T )

dt
= −µ1(t)′D(t, T ) −D(t, T )µ1(t) − 4A(t, T )Σ(t)Σ(t)′D(t, T ) with D(T, T ) = D,

dE(t, T )

dt
= −2D(t, T )µ0(t)−µ1(t)′E(t, T )−2A(t, T )Σ(t)Σ(t)′E(t, T )−2D(t, T )Σ(t)Σ(t)′B(t, T )

with E(T, T ) = E, and finally

dF (t, T )

dt
= −µ0(t)′E(t, T )−trace(Σ(t)′D(t, T )Σ(t))−B(t, T )′Σ(t)Σ(t)′E(t, T ) with F (T, T ) = F,

and it holds that

∫ t

0

(
Φs[2X

′
sA(s, T ) +B(s, T )′] + Ψs[2X

′
sD(s, T ) + E(s, T )′]

)
Σ(s)dWs

is a martingale for all 0 ≤ t ≤ T , then Φt is a martingale, which is equivalent to

E
[
e−

R T

0
r(Xs,s)dseX

′
T
A(T,T )XT +B(T,T )′XT +C(T,T )[X ′

TD(T, T )XT + E(T, T )′XT + F (T, T )]
∣∣∣Ft
]

= e−
R t

0
r(Xs,s)dseX

′
tA(t,T )Xt+B(t,T )′Xt+C(t,T )[X ′

tD(t, T )Xt + E(t, T )′Xt + F (t, T )].

This, in turn, shows that

E
[
e−

R T

t
r(Xs,s)dseX

′
T
AXT +B

′
XT +C [X ′

TDXT + E
′
XT + F ]|Ft

]

= eX
′
tA(t,T )Xt+B(t,T )′Xt+C(t,T )[X ′

tD(t, T )Xt + E(t, T )′Xt + F (t, T )],

which is exactly what was wanted. QED
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7 Appendix B

This appendix takes the reader through the details of the extended Kalman filter as applied

in the paper. The estimation is performed in two steps. First, the extended Kalman filter is

applied to estimate the interest rate process. Next, given the estimated path and parameters

for the rt-process, the Kalman filter is used to jointly estimate the paths and parameters of

X
i,λ
t and Xi,π

t for each firm.

7.1 Step 1: The Kalman filter estimation of rt

The interest rate is assumed to be

drt = κr(θr − rt)dt + σrdW
r
t

Discretizing this process an affine transition equation is obtained

rt = Φr,0
t (ψ) + Φr,1

t (ψ)rt−1 + urt , urt ∼ N(0, V r
t (ψ)),

where

Φr,0
t (ψ) = θr(1 − e−κr∆t),

Φr,1
t (ψ) = e−κr∆t,

V r
t (ψ) =

σ2
r

2κr
(1 − e−2κr∆t).

Here, ∆t is the same time step size as was used in the simulation, and ψ is the set of parameters

to be estimated.

Due to risk premia γr0 and γr1 it holds under the Q-measure that

drt =
(
κrθr − γr0σr − (κr + γr1σr)rt

)
dt + σrdW̃

r
t .

The model-implied price of a treasury bond with maturity at T and coupon rate C paid

semi-annually is

Vt(rt, T ;ψ) = E
Q
t [e−

R T

t
rudu] +

N∑

i=1

C

2
E
Q
t [e−

R ti
t rudu]

= eαr(T−t;ψ)+βr(T−t;ψ)rt +

N∑

i=1

C

2
eαr(ti−t;ψ)+βr(ti−t;ψ)rt ,

where αr(T − t;ψ) and βr(T − t;ψ) are the well-known solutions of the ODEs in the Vasicek

model.
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Since the yield to maturity yt(T − t) on such a bond is the solution to the equation

N∑

i=1

C

2
e−yt(T−t)ti + e−yt(T−t)T = Vt(rt, T ;ψ),

it is a non-linear function of the state variable rt

yt(T − t) = z(rt, T − t;ψ)

In addition, it is assumed that there is error in the measurement of yields, so the final

measurement equation is given by37

yit(T − t) = z(rt, T − t;ψ) + εt, εt ∼ N(0, σ2
ε ).

This means that the set of parameters to be estimated is given by

ψ = (κr, θr, σr, γ
r
0 , γ

r
1 , σε).

To apply the extended Kalman filter a linear measurement equation is needed. To this

end the model-implied yields are approximated by a first order Taylor expansion around the

best guess of rt in the prediction step of the Kalman filter algorithm (see below for details).

This best guess is denoted by r̂t|t−1 whereby the approximation becomes

z(rt, T − t;ψ) ≈ z(r̂t|t−1, T − t;ψ) +
∂z(rt, T − t;ψ)

∂rt

∣∣∣
rt=brt|t−1

(rt − r̂t|t−1).

Defining

At(ψ) ≡ z(r̂t|t−1, T − t;ψ) − ∂z(rt, T − t;ψ)

∂rt

∣∣∣
rt=brt|t−1

r̂t|t−1,

Bt(ψ) ≡ ∂z(rt, T − t;ψ)

∂rt

∣∣∣
rt=brt|t−1

,

the measurement equation can be given on an affine form as

yt(T − t) = At(ψ) +Bt(ψ)rt + εt.

In the following, the steps of the standard Kalman filter are described. Define the total

information available at time t by

Yt = (y1, y2, . . . , yt).

37The measurement error is thus assumed homoskedastic and uncorrelated across maturities and across time,
just as it is in the simulation.
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Now, assume that we have a best guess of the value of the state variable in the last period,

r̂t−1, and a guess for its mean square error matrix Σ̂k−1. In the prediction step of the Kalman

filter we get the best guess of rt given the information set Yt−1 which can be shown to be

r̂t|t−1 = EP [rt|Yt−1] = Φr,0
t (ψ) + Φr,1

t (ψ)r̂t−1.

The corresponding guess for the mean square error matrix is

Σ̂t|t−1 = Φr,1
t (ψ)Σ̂t−1Φ

r,1
t (ψ)′ + Vt(ψ).

In the update step the guess is improved upon by using the additional information con-

tained in Yt. Here it can be shown that

r̂t = E[rt|Yt] = r̂t|t−1 + Σ̂t|t−1Bt(ψ)′F−1
t vt,

Σ̂t = Σ̂t|t−1 − Σ̂t|t−1Bt(ψ)′F−1
t Bt(ψ)Σ̂t|t−1,

where38

Ht(ψ) = σ2
εI,

vt = yt − E[yt|Yt−1] = yt − z(r̂t|t−1;ψ),

Ft = cov(vt) = Bt(ψ)Σ̂t|t−1Bt(ψ)′ +Ht(ψ).

The log-likelihood function for a given vector of parameters ψ can be calculated as39

logL(y1, . . . , yN ;ψ) =
N∑

t=1

(
− mt

2
log(2π) − 1

2
log |Ft| −

1

2
vTt F

−1
t vt

)
.

Finally, since the interest rate process is stationary under the P -measure, the algorithm is

started at the unconditional mean and variance of the state variable under this measure

r̂0 = θr, Σ̂0 =
σ2
r

2κr
.

The optimal choice of the parameters and the corresponding most likely path of rt is found

by maximizing the value of the log-likelihood function.40

38The dimension of Ht(ψ) is determined by the number of bond yields observed at time t.
39mt is the number of observed yields at time t.
40See Duffee (1999) for a similar estimation based on the CIR model for the rt-process.
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7.2 Step 2: The Kalman filter estimation of X
i,λ
t and X

i,π
t

Given the result of the estimation of rt, the parameters and paths of Xi,λ
t and X

i,π
t need to

be estimated. The structure of the default intensity as well as the recovery rate is maintained

as in the simulation, i.e.

λit = λi0 + λir(rt − θr) + λi1(X
i,λ
t − θiλ),

πit = πi0 + πir(rt − θr) + πi1(X
i,π
t − θiπ).

From these equations it follows that it will not be possible to distinguish between the factor

loading λi1 and the mean θiλ. The same holds for πi1 and θiπ in the recovery rate. This

identification problem is solved by fixing the means at θiλ = 0.005 and θiπ = 0 (which is

identical to the values used in the simulation). Given this restriction there are 15 parameters

to be estimated in the case where the idiosyncratic risk factors both carry risk premia

ψi = (λi0, λ
i
r, λ

i
1, κ

i
λ, σ

i
λ, γ

i,λ
0 , γ

i,λ
1 , πi0, π

i
r, π

i
1, κ

i
π, σ

i
π, γ

i,π
0 , γ

i,π
1 , σiε).

This number is reduced to 11 parameters if there are no idiosyncratic risk premia

ψi = (λi0, λ
i
r, λ

i
1, κ

i
λ, σ

i
λ, π

i
0, π

i
r, π

i
1, κ

i
π, σ

i
π, σ

i
ε).

The above solution of the identification problem implies that it will be the products X̃i,λ
t =

λi1X
i,λ
t and X̃

i,π
t = πi1X

i,π
t that are going to be estimated. Under the P -measure these

processes are given by

dX̃
i,λ
t =

(
κiλλ

i
1θ
i
λ − κiλX̃

i,λ
t

)
dt+ λi1σ

i
λdW

i,λ
t ,

dX̃
i,π
t =

(
κiππ

i
1θ
i
π − κiπX̃

i,π
t

)
dt+ πi1σ

i
πdW

i,π
t .

Since these are Vasicek processes the transition equations are still affine

X̃
i,λ
t = Φλ,0

t (ψi) + Φλ,1
t (ψi)X̃i,λ

t−1 + uλt , uλt ∼ N(0, V λ
t (ψi)),

X̃
i,π
t = Φπ,0

t (ψi) + Φπ,1
t (ψi)X̃i,π

t−1 + uπt , uπt ∼ N(0, V π
t (ψi)),
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where

Φλ,0
t (ψi) = λi1θ

i
λ(1 − eκ

i
λ
∆t), Φλ,1

t (ψi) = e−κ
i
λ
∆t, V λ

t (ψi) =
(λi1σ

i
λ)

2

2κiλ
(1 − e−2κi

λ
∆t),

Φπ,0
t (ψi) = πi1θ

i
π(1 − eκ

i
π∆t), Φπ,1

t (ψi) = e−κ
i
π∆t, V π

t (ψi) =
(πi1σ

i
π)

2

2κiπ
(1 − e−2κi

π∆t).

with ∆t equal to the time step size used in the simulation.

Due to the independence between X̃i,λ
t and X̃i,π

t the structure on matrix form is as follows41

Φ0
t (ψ

i) =

(
Φλ,0
t (ψi)

Φπ,0
t (ψi)

)
, Φ1

t (ψ
i) =

(
Φλ,1
t (ψi) 0

0 Φπ,1
t (ψi)

)
, Vt(ψ

i) =

(
V λ
t (ψi) 0

0 V π
t (ψi)

)
.

If risk premia are attached to these processes, under the Q-measure they become

dX̃
i,λ
t =

(
λi1(κ

i
λθ
i
λ − γ

i,π
0 σiλ) − (κiλ + γ

i,λ
1 σiλ)X̃

i,λ
t

)
dt+ λi1σ

i
λdW̃

i,λ
t ,

dX̃
i,π
t =

(
πi1(κ

i
πθ

i
π − γ

i,π
0 σiπ) − (κiπ + γ

i,π
1 σiπ)X̃

i,π
t

)
dt+ πi1σ

i
πdW̃

i,π
t .

Given the above setup and the estimated path and parameters of rt, the bond price formula

from the simulation is maintained

V i
t (T − t) = E

Q
t [e−

R T

t
(ru+λi

u)du] +
N∑

i=1

C

2
E
Q
t [e−

R ti
t (ru+λi

u)du]

+

∫ T

t
E
Q
t [πisλ

i
se

−
R s

t
(ru+λi

u)du]ds

+
N∑

i=1

∫ ti

ti−1

C

2

s− ti−1

ti − ti−1
E
Q
t [πisλ

i
se

−
R s

t
(ru+λi

u)du]ds.

Deriving the yield from the model-implied bond price, the measurement equation can now be

written as

yit(τ
k) = z(X̃i,λ

t , X̃
i,π
t , τk;ψi) + εit(τ

k), εit(τ
k) ∼ N(0, σ2

ε ).

where the measurement errors are assumed to be independent and homoskedastic across time

and maturities.

The first order Taylor approximation around the best guess of (X̃i,λ
t , X̃

i,π
t ) in the prediction

41See Appendix B in Kim (2004) for the matrix form in more general settings.
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step, (
̂̃
Xi,λ

t|t−1,
̂̃
Xi,π

t|t−1), is given by

z(X̃i,λ
t , X̃

i,π
t , τ i;ψi) ≈ z(

̂̃
Xi,λ

t|t−1,
̂̃
Xi,π

t|t−1, τ
i;ψi)

+
∂z(X̃i,λ

t , X̃
i,π
t , τ i;ψi)

∂X̃
i,λ
t

∣∣∣
( eXi,λ

t , eXi,π
t )=(

deXi,λ
t|t−1,

deXi,π
t|t−1)

(X̃i,λ
t − ̂̃

Xi,λ
t|t−1)

+
∂z(X̃i,λ

t , X̃
i,π
t , τ i;ψi)

∂X̃
i,π
t

∣∣∣
( eXi,λ

t , eXi,π
t )=(

deXi,λ
t|t−1,

deXi,π
t|t−1)

(X̃i,π
t − ̂̃

Xi,π
t|t−1).

This means that Bt(ψ
i) =

(
Bλ
t (ψi)

Bπ
t (ψi)

)
should be defined by

Bλ
t (ψ

i) ≡ ∂z(X̃i,λ
t , X̃

i,π
t , τ i;ψi)

∂X̃
i,λ
t

∣∣∣
( eXi,λ

t , eXi,π
t )=(

deXi,λ
t|t−1,

deXi,π
t|t−1)

and

Bπ
t (ψi) ≡ ∂z(X̃i,λ

t , X̃
i,π
t , τ i;ψi)

∂X̃
i,π
t

∣∣∣
( eXi,λ

t , eXi,π
t )=(

deXi,λ
t|t−1,

deXi,π
t|t−1)

.

Finally, the algorithm is started at the unconditional mean and variance of the state

variables

̂̃
Xi,λ

0 = λi1θ
i
λ,

̂̃
Xi,π

0 = πi1θ
i
π, Σ̂i

0 =




(λi
1
σi

λ
)2

2κi
λ

0

0
(πi

1
σi

π)2

2κi
π


 .

The remaining details of the Kalman filter remain the same as in the estimation of the interest

rate rt.
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ψ λ0 λr λ1 κλ σλ γλ0 γλ1 π0 πr π1 κπ σπ γπ0 γπ1 σε
λ0 1 0.176 -0.137 -0.392 -0.047 0.824 0.023 -0.116 -0.179 -0.496 -0.395 0.058 -0.110 0.377 0.155
λr 1 0.150 -0.078 -0.069 0.401 0.164 -0.040 0.208 -0.004 -0.240 0.234 0.027 0.219 0.132
λ1 1 -0.185 -0.837 -0.168 0.100 -0.204 0.139 -0.195 0.176 0.081 -0.016 -0.096 0.044
κλ 1 0.291 0.022 -0.282 0.185 -0.105 0.642 0.122 0.056 0.107 -0.221 -0.038
σλ 1 0.106 -0.026 0.092 -0.046 0.208 -0.257 0.082 -0.022 0.160 -0.060
γλ0 1 0.016 -0.064 -0.221 -0.181 -0.431 0.140 -0.073 0.345 0.151
γλ1 1 0.048 -0.148 -0.111 0.091 0.006 0.058 -0.154 -0.033
π0 1 -0.180 0.456 0.373 -0.368 0.734 -0.407 0.182
πr 1 0.052 -0.016 0.021 0.031 0.093 -0.031
π1 1 0.243 -0.390 0.030 -0.275 0.161
κπ 1 -0.340 0.353 -0.953 -0.037
σπ 1 -0.101 0.325 -0.191
γπ0 1 -0.389 -0.009
γπ1 1 0.088
σε 1

Table 9: Matrix of correlation coefficients for the empirical distribution of parameter estimates in Model B with risk premia on all three risk factors and a
true standard deviation of measurement error equal to 1 bp. The matrix has been calculated based on the results of 50 estimations.
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Figure 6: Histograms of the distribution of estimated parameter values for the factor loadings of the
default intensity λt based on the simulated data set with no risk premia attached to the default and
recovery risk (γ0

λ = γ1
λ = γ0

π = γ1
π = 0) and a standard deviation of the measurement error fixed at

σε = 1 bp.
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Figure 7: Histograms of the distribution of estimated parameter values for the factor loadings of
the recovery rate πt based on the simulated data set with no risk premia attached to the default and
recovery risk (γ0

λ = γ1
λ = γ0

π = γ1
π = 0) and a standard deviation of the measurement error fixed at

σε = 1 bp.
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Figure 8: Histograms of the distribution of estimated parameter values for the idiosyncratic risk

factors Xλ
t and Xπ

t based on the simulated data set with no risk premia attached to the default and
recovery risk (γ0

λ = γ1
λ = γ0

π = γ1
π = 0) and a standard deviation of the measurement error fixed at

σε = 1 bp.
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Figure 9: Histograms of the distribution of estimated parameter values for the factor loadings of
the default intensity λt based on the simulated data set with risk premia attached to the default and
recovery risk and a standard deviation of the measurement error fixed at σε = 1 bp.
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Figure 10: Histograms of the distribution of estimated parameter values for the factor loadings of
the recovery rate πt based on the simulated data set with risk premia attached to the default and
recovery risk and a standard deviation of the measurement error fixed at σε = 1 bp.
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Figure 11: Histograms of the distribution of estimated parameter values for the idiosyncratic risk

factors Xλ
t and Xπ

t based on the simulated data set with risk premia attached to the default and
recovery risk and a standard deviation of the measurement error fixed at σε = 1 bp.
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Figure 12: Histograms of the distribution of estimated parameter values for the risk premia

(γ0
λ, γ

1
λ, γ

0
π, γ

1
π) of the idiosyncratic risk factors Xλ

t and Xπ
t based on the simulated data set with

risk premia attached to the default and recovery risk and a standard deviation of the measurement
error fixed at σε = 1 bp.
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